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Abstract

Where does innovation truly thrive? Inventive activity in the US is strikingly concentrated in a
handful of hubs. This raises compelling questions: Does further agglomeration drive innovation,
or could a more dispersed approach better leverage regional spillovers? To investigate, I exploit
variation in patent citation lags across US states and develop a novel endogenous growth model
with mobile inventors and workers. The model integrates an exogenous knowledge network that
facilitates the dynamic exchange of ideas—laying the foundation for future inventions—between
locations, revealing that inventors do not internalize how their location choice influences broader
knowledge diffusion. These knowledge spillovers call for a targeted, place-based R&D subsidy
to unlock latent innovation potential. Calibrating the model to data on inventor and worker
allocations—and estimating the knowledge diffusion network from patent citations—I find that
optimal policy would further concentrate inventors in established hubs, enhancing welfare by 1.8
percent in consumption-equivalent terms and boosting the economy’s long-run growth rate by 0.14
percentage points.
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1 Introduction

Innovation in the United States is strikingly concentrated in a few locations such as Silicon Valley in
California, Route 128 in Massachusetts, and Seattle in Washington. In 2005, the top ten states produced
65 percent of all patents and hosted 64 percent of inventors, while accounting for only 47 percent of
the population. The excessive concentration of innovative activity is pervasive, and noted in several
studies (Buzard et al., 2020; Buzard and Carlino, 2013; Moretti, 2021), and it is not only specific to the
US economy.1 For example, Carrincazeaux et al. (2001) shows that six regions in France account for 75
percent of corporate R&D workers while their share of production workers is only 45 percent.2

The spatial allocation of inventors is crucial for the overall growth trajectory of an economy. Main
reason can be traced back to Marshall (2009) in his treatment that localities benefit from knowledge
spillovers within regions. Types of spillovers that are important for the creation of new inventions are
in intertemporal nature, and can be traced by patent citations. Inventors build on top of the shoulders
of the past when they develop new ideas. If knowledge diffusion between innovation centers is not
frictionless, then inventors’ location choices, or the accumulation of innovative activity in certain
regions, would have nontrivial consequences on the technological development of the overall economy.

In this paper, I study intertemporal knowledge spillovers and spatial allocation of inventors across
locations in the US, and its consequences on the long run growth of the economy. Firstly, I document
signification variation in the spatial allocation of inventors relative to workers across states. Inventors
relocate intensely to a few number of states that are usually home to innovation hubs. What is the effect
of their location choice on the innovation process and the creation of ideas? I approach this question
from the angle of intertemporal knowledge spillovers between regions. That is, rather than focusing
only on within-location agglomeration externalities, I study knowledge flows across all regions, which
are proxied by patent citations. Patent citations provide many advantages in this regard, as Jaffe et
al. (1993) and Jaffe et al. (2000) argue, they can be interpreted as paper trails of knowledge spillovers
between inventors, although inventors might live very far away from each other in space.

Knowledge spillovers, in the specific context of innovation and R&D, are mostly in intertemporal
nature, finding its meaning in the famous phrase, new ideas are build on top of the shoulders of the
past giants. Current inventors build on past inventions when they create new ideas, and they cite the
ideas from which they benefit the most (Jaffe et al. (2000)). Analysis of patent citations data reveals
that patent citations are also spatially concentrated. In particular, states like California, Massachusetts,
Connecticut are the most cited states in the US. However, I argue that this observation alone cannot
be interpreted as the importance of these states being the sole origins of idea creation hubs. Instead,
I investigate patent citation lags between locations, and find significant variation across state-pairs,
which suggests that some states are better connected to each other in the sense that they tend to cite

1See Carlino and Kerr (2015) for an extensive review of the literature.
2It must be noted that innovation hubs might move between regions over time, although this process is very slow.

Lamoreaux et al. (2004) shows that Cleveland, Ohio, demonstrated similar characteristics as a dominant innovation hub
with its sizable angel financing and startup incubators between 1870 and 1920. Similarly, Klepper (2010) compares Detroit’s
automobile manufacturing industry in the early twentieth century with the semiconductor industry in Silicon Valley today,
noting the similarities between the two leading the way for excessive clustering.
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each other relatively quicker than other state pairs. This variation in patent citation lags identifies the
strength of connections between locations in terms of knowledge flows.

I study knowledge spillovers because of several reasons. In endogenous growth literature, in-
tertemporal knowledge spillovers are identified as the main reason for the justification of R&D subsidy
policies (Acemoglu et al., 2018; Aghion and Howitt, 1992; Grossman and Helpman, 1991; Romer, 1990).
When inventors invent their ideas and develop new techniques, they do not internalize their effect on
the creation of future ideas. This positive externality creates an incentive for the policy maker in favor
of R&D subsidies. However, if knowledge spillovers vary across locations and are imperfect, this raises
the question of whether uniform R&D subsidies are appropriate, or whether place-based subsidies
should be designed instead—and if so, how such policies can be structured optimally.

Answering this normative question requires a theory of intertemporal knowledge spillovers between
locations, inventor migration, and innovation as the engine of economic growth. I build a novel spatial
economic growth model with endogenous inventor and worker migration choices, and heterogeneous
knowledge linkages across locations. In the model, inventors and workers who hold idiosyncratic
preferences for locations can move between regions freely albeit subject to a simple timing friction.
Their objective is to maximize their life-time utility. Production side of the model is intentionally kept
simple. In equilibrium, production workers earn the same wage income in all locations, thus their
migration decision identifies location specific characteristics that are also common to inventors when
they relocate. These characteristics are called amenities in the model. On top of amenity differences,
locations in the model are heterogeneous in their fundamental research productivity. The idea is
that some locations provide more resources for the R&D process such as the presence of leading
universities like Stanford in California and MIT in Massachusetts, or certain institutions supporting
innovation and dynamism.3 These characteristics are unobserved, and they are estimated by matching
the concentrated inventor allocation across US states. Another dimension by which locations are
differentiated is their connectedness to the rest of the economy in terms of idea flows. In the model,
past ideas invented in locations spill over to the rest over time, and they form the endogenous idea
stock over which inventors in destination locations build on top when they perform R&D. The diffusion
process is subject to frictions in that past ideas diffuse to other regions with a random time lag, where
average time lag is specific to the location-pair, and it does not have to be symmetric. Inventors benefit
both from location’s fundamental (exogenous) resources and endogenous idea accumulation. All else
equal, inventors that are located in states to which idea inflows are faster would be more productive in
R&D, and they would earn higher wages. In the model, this is the source of externality of inventor
location choice on the rest of the economy.

3See Jaffe (1989) for an early account on knowledge spillovers from research conducted in universities to firms located
nearby. See also Nicholas and Lee (2013) for the special role of Stanford University in the development of Silicon Valley
as an innovation hub. Kantor and Whalley (2014) find significant local spillovers from university activity identified from
the interaction between university endowments and stock market shocks over time. These spillovers are larger when firms
become closer to universities in the technology space. In addition to the role of universities, cities may also be heterogeneous
in their entrepreneurship culture, and how failure is perceived among entrepreneurs. Landier (2005) provides a formal
model in which two equilibria with different levels of entrepreneurship can emerge as a result of endogenous cost of failure
for entrepreneurs.
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The model also addresses endogenous location choices of firms who are employers of inventors.
Potential entrants in the model are mobile across locations, and in equilibrium, they move to the
location that provide the highest discounted future profits. Firms that enter to the market has a single
R&D lab in a location in which inventors are employed, while they are indifferent across locations
for the place of their production. In equilibrium, more research productive locations are home to a
higher number of innovative firms who demand inventors more. Thus, the model simultaneously
explains the presence of high volume of innovative firms in innovation hubs along with high number
of inventors relocated there.

I quantify the model to recover location specific amenities and exogenous research productivities
from the observed allocation of production workers and inventors. The knowledge network, which is
the matrix of diffusion rates across state-pairs are estimated from patent citation lags in line with the
idea accumulation process in the model. Estimation of the network reveals that (i) there is substantial
heterogeneity in connectedness between locations, (ii) within-location spillovers are the strongest, and
(iii) estimated idea diffusion rates increase with physical proximity and academic citation flows. After
estimating the parameters, I test the model fit for a set of untargeted moments. This exercise suggests
that the model performs well in explaining these moments.

I report the estimation results in two steps. In the first step, I estimate the model assuming that
the US economy is comprised of only ten states where most of the patents are produced. I compare
estimation results for two versions of the model—with and without knowledge spillovers. Then, I
proceed with the optimal policy and run several counterfactual exercises to understand the nature
of the policy. The optimal policy calls for more concentration in inventor allocation in space, while
allocating inventors to more central states in the knowledge network. In the second step, I estimate the
model for all US states. The optimal place based R&D subsidy policy concentrates inventors mostly
in Washington, California and Massachusetts, although the model is abstracted away from reduced
form agglomeration spillovers. The reason is that these states are connected well with the rest of the
economy, while they are also the most research productive states. The welfare of the society increases
by 1.8 percent in consumption equivalent terms under the optimal policy. Most of the increase in
welfare stems from an increased long-run growth rate of the economy with a 0.14 percentage points.

Literature. A large body of research documents the strong spatial concentration of inventive ac-
tivity. Empirical work has highlighted the persistence of localized knowledge spillovers causing
agglomeration. Ellison and Glaeser (1997) and Duranton and Puga (2004) provide microfoundations
for urban agglomeration economies. Helsley and Strange (2002) shows that the availability of a
dense network of input providers in urban areas facilitates innovation by making it less costly for
firms, hence concentrating inventive activity in large cities even without the presence of knowledge
spillovers. Gerlach et al. (2009) shows, in a model with labor pooling in innovation centers, firms
undertake voluminous and more diversified portfolios of R&D. Contrary to these microfoundations
without knowledge spillovers, another strand of the literature focuses on the exchange of ideas in
cities stressing the role of knowledge spillovers in creating agglomeration economies (Crews, 2023;
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Davis and Dingel, 2019; Glaeser, 1999). Moretti (2021) finds using patent data that inventors experience
sizable productivity increase in patenting after moving to a city with a large cluster of inventors in the
same field. In this paper, I take a more general approach to knowledge diffusion across space and focus
on spillovers not only within locations but also across locations. In my model, knowledge spillovers
increase R&D productivity of inventors, and induce agglomeration economies for two reasons. States
where past knowledge is shared among local inventors relatively quickly attract inventors relatively
more. Moreover, states that are better connected to states with high research activity benefit from
spillovers disproportionately more causing inventor inflow.

Similar to the methodology in this paper, knowledge diffusion across space has been studied exten-
sively using patent citations. Jaffe et al. (1993) first showed that patent citations are disproportionately
local, which they interpreted as evidence of geographically localized knowledge spillovers. Although
Krugman (1992) argued that knowledge spillovers leave no paper trail, Jaffe et al. (1993) provide a
comprehensive account of the role of patent citations in tracing intertemporal spillovers. Thompson
and Fox-Kean (2005) emphasize the importance of carefully designed control patents in measuring the
degree of knowledge diffusion in reduced form settings. On the other hand, Singh (2005) confirms
strong intraregional spillovers in a regression framework and highlights the role of inventor mobility
and social networks in shaping diffusion patterns. While these papers mainly focus on estimating
localized spillovers from patent citations, Peri (2005) provides estimates on the fraction of knowledge
diffusing outside of the origin region in a global setting. The empirical strategy in this paper is closest
to Peri (2005), Caballero and Jaffe (1993) and Cai et al. (2022) in deriving an estimating equation from a
structural relationship between idea flows and resulting citation patterns. In my model, the knowledge
diffusion network plays a central role in spatial allocation of inventors, and at the same time, the
heterogeneous intensity of idea flows between state pairs results in a structural equation for patent
citations which allows me to estimate the entire network.4

The growth and policy literature emphasized the role of intertemporal knowledge spillovers in
justifying R&D support (Acemoglu et al., 2018; Aghion and Howitt, 1992; Grossman and Helpman,
1991; Romer, 1990). More recent work has studied R&D externalities at the firm and product level
(Akcigit and Kerr, 2018; Bloom et al., 2013) and the design of optimal innovation policies (Akcigit et al.,
2022). This work generally treats space as homogeneous, while my contribution is to integrate spatial
heterogeneity into the design of R&D policy.

Finally, the literature on place-based policies provides a natural benchmark for my analysis. Kline
and Moretti (2014) review the effects of local economic development programs, while Fajgelbaum et al.
(2019) examine the spatial allocation of economic activity in response to heterogeneous taxation at the
state level. Gaubert (2018) further link firm sorting and spatial inequality to policy, concluding that
subsidizing small cities reduce aggregate welfare. In a recent paper, Gross and Sampat (2023) shows

4Knowledge diffusion across technology fields has also recently gained attention in the literature. Acemoglu et al.
(2016) model the idea production in a downstream technology class as a function of stock of knowledge diffused from
upstream classes, similar to input-output production networks. This input-output network is quantified from the ratio of
citations between two technology classes to the number of patents generated. Liu and Ma (2021) takes this idea to a general
equilibrium setting and analyzes the optimal allocation of R&D resources across technology fields.
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that place-based R&D subsidies can create long-lasting agglomeration effects. In parallel, Desmet et
al. (2018) develop a dynamic model of spatial development with realistic geography and knowledge
flows but without creative destruction, and Cai et al. (2022) analyzes the three-way interaction between
international trade, innovation, and diffusion along with input-output linkages across industries.
While I abstract away from geography, trade and input-output network in production, I particularly
focus on location specific R&D subsidy policy in a closed economy environment in order to maximize
full growth potential via the internalization of the asymmetric knowledge diffusion network between
regions.

While prior work emphasizes the importance of agglomeration, knowledge diffusion, and R&D
subsidies, these strands are typically studied in isolation. Existing endogenous growth models abstract
from spatial heterogeneity, while spatial models rarely embed a microfounded knowledge diffusion
network. Moreover, the policy debate has largely focused on either uniform R&D subsidies or local
development programs without considering how the network structure of idea flows should shape
optimal place-based policies. My paper fills this gap by (i) estimating a state-level knowledge diffusion
network from patent citation lags, (ii) embedding it in a dynamic growth model with mobile inventors
and firms, and (iii) using the framework to design optimal spatial R&D subsidies.

The rest of the paper is organized as follows. Section 2 outlines the data source used in this
study and provides empirical regularities in the spatial allocation of workers and inventors as well as
heterogeneous citation lags across state pairs in the US. Section 3 introduces the theoretical model and
resulting equilibrium along with planner’s problem, and model parameters are estimated in Section
4. Section 5 discusses the results for optimal place-based R&D policy in the US. Finally, Section 6
concludes. Proofs of propositions are given in appendix Section A.

2 Empirical regularities

In this section, I focus on two strong phenomena that I observe from the patent data. Firstly, I show
that innovation and patenting, and relatedly inventor locations are clustered geographically in the
United States, more than other types of economic activity such as employment, population, and GDP.
Then, I proceed with the distribution of inventors per employment in locations to understand the
extent of the concentration. Some states are asymmetrically populated by inventors relative to overall
employment, suggesting heterogeneous demand for researchers across US states. Finally, I analyze
geographical concentration in patent citations. I document huge variation in patent citation lags
between state-pairs as an evidence for varying degrees of knowledge linkages across US states.

Data. The period I study in this paper is the decade between 2000 and 2010. The geographical unit
of analysis is chosen to be all the states in the US including DC (51 states). Worker and inventor
allocations over the cross section of states are measured for the median year of the analysis, 2005. For
patent citations data, I restrict citing patents between 2000-2010, and cited patents between 1990-2010
(ten more years before 2000). The reason I restrict the sample at 2010 is to remove truncation bias in

5



Figure 1: Share of top 10 states with respect to type of economic activity
Note: The set of top 10 states changes among five activities.

patent citations as suggested by Hall et al. (2001). The other reason not to include cited patents that
are issued before 1990 is to ensure computational feasibility in my estimation procedure.

State level employment data comes from Census Bureau’s Business Dynamics Statistics (BDS). In
BDS data, inventors and researchers (in general any type of employment associated with R&D and
innovation) are also counted under total employment figures. As the number of total researchers in
the US is relatively very small compared to total employment, I do not subtract number of inventors
from state level total employment numbers.5

For patent citations and spatial allocation of inventors, I use PatentView’s disambiguated patent
dataset. This dataset is a good fit for the purpose of this study as inventor names and addresses are
disambiguated, and hence, allocation of inventors across US states is measurable. The dataset consists
of the universe of patents that are applied to USPTO, and it covers the years starting from 1976 until
recent years. As explained above, the time range for patent citations is restricted to 2000-2010 for citing
patents, and 1990-2010 for cited patents. Hence the maximum citation lag in my data is 20 years with
the shortest being zero—citing and cited patents belong to the same year. To determine the location
of patents, I use inventor addresses assuming that the R&D is performed in the same location where
inventor lives, in line with the model as will be explained in Section 3. Finally, to determine the spatial
allocation of inventors across US states, I count the number of unique inventors in 2005, similar to
employment.

It should be noted that in the patent data, only inventors that apply for a patent in a year
are observed. Therefore, interpreting the number of inventors in the patent dataset as a direct
correspondence of the total number of inventors/researchers in states, including ones that do not

5This is more of a practical approach as it simplifies the model inversion procedure by removing one iterative step.
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Figure 2: Employment and inventor shares of US states, 2005
Note: Axes are in log scale for visibility. Worker share of a state is calculated as the ratio of total employment of the state divided by the
total employment in the US. Similarly, inventor share of a state equals to the ratio of number of inventors located in the state to the total
number of inventors.

apply for a patent, is biased, and it is corrected through the lens of the model when I estimate the
model parameters, as the model results in several predictions on patenting probability of individual
inventors. Full details are described in Section 4.

2.1 Spatial allocation of inventors and employment in the US

Innovative activity that is measured by inventors and patenting is spatially more concentrated than
other types of economic activities such as population, GDP, and employment. Figure 1 shows the
higher concentration in inventor and patenting allocation across US states as measured by the share of
top 10 states.

Figure 2 shows the scatter plot of inventor and employment shares of all US states. California is
home to the highest share of employment and inventors. There is strong positive correlation between
states’ inventor and employment shares. This figure also shows that inventor share of some states
such as California (CA), Washington (WA) and Massachusetts (MA) is higher than their employment
share. On the contrary, small states such as Alaska (AK), Wyoming (WY), and South Dakota (SD) are
populated mainly by production workers rather than inventors.

Figure 3 visualizes the variation in inventor-to-employment ratio on a US map. Inventors prefer
some clusters of states more than workers. For example, in the West coast, close states such as
Washington, Oregon, California and Idaho are populated by inventors more than workers. Washington
is the highest state in terms of inventor to worker ratio with more than three inventors per thousand
employment. In the Midwest, Minnesota and Michigan stand out as the states that are preferred more

7



MD

IA

DEOH

PA
NE

WA

AL

ARNM

TX

CA

KY

GA

WI

OR

MO
VA

TN

LA

NY

MIID

FL

IL

MT

MN

IN

MA

KS

NV

VT

CT

NJ

DC

NC

UT

ND

SC

MS

CO

SD

OK

WY

WV

ME

NH

AZ

RI

AK

HI

1 2 3

Number of inventors per thousand employment

Figure 3: Number of inventors per thousand employment, 2005

by inventors. In the East cost, on the other hand, Massachusetts, Connecticut, Vermont and New
Hampshire form a cluster where inventors are relocated relatively more than workers.

States to which inventors are relocated more intensely overlaps partially with the set of states that
produce most of the patents in the US in year 2005. These states account for 65% of patents, and
64% of all inventors. For instance, Washington, California, Minnesota, Michigan, and Massachusetts
from above are also in the list of top 10 patenting states. Other states in the top 10 list are Texas,
New Jersey, New York, Illinois and Pennsylvania. However, inventors do not relocate towards these
states disproportionately. This observation suggests that a state’s share of inventors alone might not
be very informative about its research productivity and the extent of innovative activity, as there are
other reasons that could explain the high number of inventors in a state such as amenities, which
would also affect the migration choice of production workers in a similar way. Therefore, the variation
in inventor-to-worker ratio across locations is a better candidate to identify the specific factors that
applies only to inventors when they decide where to locate.

The line of reasoning above is an articulation of a simple supply-demand analysis. Supply of
inventors to a region increases with the wage rate offered there. Amenities on the other hand can be
considered as a supply shifter. The demand for inventors in a region decreases in inventor wages,
while research productivity of the state can be considered as a demand shifter. Higher number of
inventors in a state can be the equilibrium outcome of both supply and demand factors. High amenity
states would attract more inventors all else equal. However, amenities would also affect the migration
decision of workers. Therefore, after controlling for state’s employment share, the remaining variation
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Figure 4: Patent citation shares across US states

in observed inventor shares stems from demand related factors such as research productivity of the
location.

2.2 Patent citations across US states

In the sample patent dataset, there are 1,870,743 unique patents that applied for grant between the
years 1990 and 2010. Among these, 1,029,211 of them are applied after 2000. The number of observed
citations from patents between 2000-2010 to patents from 1990-2010 is 15,727,544.

Figure 4 plots the heatmap of citation shares of citing-cited state pairs between years 2001 and
2010. In particular, the columns correspond to cited states, while citing states are represented by rows.
A cell that corresponds to a citing state A and a cited state B shows the share of citations received
by patents from B in total citations given by A’s patents. As inferred from the citation share matrix,
within citation rates are usually higher than out-of-state citation shares. That is, patents are more
likely to cite other patents that originate from their states. Furthermore, some cited states such as
California (CA), Connecticut (CT), Massachusetts (MA), Texas (TX) stand out as the most cited states
by others. It is not a coincidence that these states capture a higher fraction of citations from other
states, as they are also the states that produce most of the patents in the US. The citation share of small
states is expected to be lower, as the number of patents available for citation in these states is limited.
Therefore, Figure 4 is not very informative about the flow of knowledge across states when taken at
its face value. However, it still shows, just like patenting activity in the US, patent citations are also
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Figure 5: Citation probability of top 6 states as a function of time lag
Note: Within state citations are excluded from figures. For example, in the top left figure, the line corresponding to CA is excluded. Similarly,
in the middle top figure, the line corresponding to TX is excluded. The reason is that within-state citation probabilities are much higher
than others in levels shadowing the variation across states.

concentrated towards certain states.
In this study, I propose another measure for idea flows between locations from the patent citation

data—heterogeneous citation lags between states measured as the time lag between citing and cited
patents. This moment is more informative about the pace at which ideas flow across states. Figure
5 shows an example in this regard. For visual clarity, I pick the top 6 states in terms of patenting;
California (CA), Washington (WA), Texas (TX), New York (NY), Michigan (MI). Each of six plots
represent a citing state. Lines correspond to cited states excluding the citing state itself in order to
focus on citation lags between locations. The y-axis plots the average citation probability (multiplied
by 1000) calculated as the number of citations divided by the product of the number of patents in
citing and cited states (this product gives the number of all possible bilateral connections). The average
is taken across citing and cited years for a particular time lag. For example, the citation probability for
the lag 5 (years) is the average of citation probabilities that are observed between any two years that
has a lag of 5 years such as citing patents are issued in 2001 and cited patents are issued in 1996, citing
patents are issued in 2002 and cited patents are issued in 1997, and so on. Thus, Figure 5 illustrates
citation probability between any two states as a function of time lag between the time of citation and
the time of creation of cited idea.

There are three general messages of Figure 5. The first one is that citation probability is very close
to zero when the time lag between citing and cited patents is very short. In other words, the most
recent patents receive very little citations. The second message is that citation probability declines as
the time lag between citing and cited patents become very large. In other words, old patents are cited
less frequently. Finally, citation probability peaks at moderate lags. In other words, certain amount of
time is needed for cited patents to be known to others in order to start receiving citations.

Figure 5 reveals another interesting heterogeneity between citing-cited state pairs, i.e. the time
lag at which citation probability hits the peak varies across states. For instance, let’s focus on the top
left figure in which the citing state is California. The probability that patents from Massachusetts
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Figure 6: Kernel density estimates of mode, median, and mean citation lag distributions over citing-
cited state pairs
Note: Each line corresponds to the distribution of a particular moment of citation lags across citing-cited state pairs. There are 51× 51 = 2601
state pairs in total. For a fixed citing-cited state pair, I calculate the mode citation lag taking total citation counts at each lag being the
frequency of lag observations. Then the kernel density estimate of the distribution of mode citation lag across all state pairs is plotted. The
same procedure is followed for median and mean citation lag distributions.

(MA) gets citations from patents in California (CA) peaks around a time lag of 7-8 years, while this
probability peaks around 10 years for cited Texas (TX) patents. It suggests, on average, CA patents cite
MA’s patents earlier than TX’s patents. Similarly, top middle figure, in which the citing state is Texas
(TX), suggests that TX’s patents cite Massachusetts’s patents (MA) earlier than Michigan’s patents (MI).
Peak citation lags are not symmetric across citing-cited state pairs. An example is given by the bottom
left figure in which the citing state is MA. Although TX patents cite MA patents relatively quicker, MA
patents do not cite TX patents that faster. The peak citation lag for TX-MA (citing-cited) pair is around
7 years, while MA-TX peak lag is around 12 years.

The variation in citation lags between patents based on their locations identifies the idea diffusion
rates across states. As suggested by the previous discussion, the mode of citation lag between any
state-pair is a particular informative moment. In addition to mode citation lag, one can also consider
median and mean lags being other moments that identify the average time lag in diffusion of ideas
between locations. There is enough variation between state-pairs in terms of all these moments. Figure
6 shows the kernel density estimates of mode, median, and mean citation lag distributions over
state-pairs, revealing the extent of heterogeneity in citation lag moments. On average, mode citation
lag is shorter than median and mean citation lags suggesting a right-skewed distribution of citation
lags for any given citing-cited state pair.
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As will be described in Sections 3 and 4, the knowledge spillover network between states is
parameterized by a matrix of idea diffusion rates. Denoting by j the state where the idea originates,
and by i the state where the idea diffuses to, ωij will be defined as the (idea) diffusion rate parameter
from j to i. It is assumed that new ideas diffuse from j to i with a random time lag which is distributed
as Exponential(ωij). Thus, the average time lag in idea diffusion is given by 1/ωij. If ωij is higher, then
ideas diffuse relatively faster from j to i helping inventors in i to benefit the past ideas of j relatively
earlier. It is also assumed that ideas become obsolete with an exogenous rate of δ. As details are
delegated to Section 4.1, the probability by which an idea originated in j will be visible in i after τ years
is given by e−δτ

[
1 − e−ωijτ

]
. Assuming that ideas are cited at the time of their diffusion (conditional

on not being obsolete by that time), the unknown parameter ωij will be identified from the relationship
between citation probabilities and citation lags for the state pair i × j. As ωij increases, inventors in
i cites patents from j in earlier lags. This is the source of variation used to identify the knowledge
spillover network in the US economy.

3 Model

Motivated by the empirical observations, I build an endogenous growth model with migration choices
of two types of agents; workers and inventors. I keep the model as simple as possible by modifying
important aspects. Spatial aspect of the model arises due to the fact that both workers and inventors
are mobile across locations. Firms are identified by their location choices for their single R&D lab
in which they hire inventors and generate new ideas for production. Simple structure of the model
implies that firms are indifferent where to produce their products, however, they maximize their
value—discounted sum of future profits—by choosing the location for their R&D lab at the time of
entry.

3.1 Locations

There are N locations denoted by i, j = 1, . . . , N. Locations are heterogeneous ex-ante only in two
respects. Firstly, amenities provided by the location are heterogeneous and time invariant. These
amenities can be considered as environmental factors, crime rates, public goods in a location which
are valued identically by all individuals, and are denoted by Ai. Secondly, locations differ from each
other in terms of the resources they provide specifically to the inventors. These factors are, but not
limited to, universities, institutions, culture, and more importantly the past ideas that have diffused to
the location from the rest, helping inventors build on when they research for new innovative ideas. I
denote (endogenous) research productivity of location i by αi(t). This aspect of locations might be time
varying as it is assumed that it is a combination of two factors. The first factor is called fundamental
(exogenous) research productivity of the location, and denoted by ᾱi. The second factor is the volume
of past innovative ideas that have accumulated in location i up to time t, and is denoted by Ki(t).
Researchers in location i are assumed to build on these ideas when they come up with new ideas. This
respect of the model reflects the idea of intertemporal spillovers in idea generation process, which is a
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prominent feature of endogenous growth models, by supplementing it with a spatial aspect. More
details on idea diffusion and accumulation process are described in Section 3.6.

I assume a specific functional form for the formation of αi(t) from these factors

αi(t) = ᾱ
1−φ
i Ki(t)φ, φ ∈ [0, 1] (3.1)

That is, endogenous research productivity is concave in the number of ideas diffused, Ki(t).

3.2 Preferences

Total population consists of two types of individuals, workers and researchers. The aggregate measure
of workers in the model, denoted by L̄, is normalized to one. Similarly, aggregate measure of inventors
is also a constant parameter denoted by R̄. Both types of individuals are mobile across locations, earn
labor income, and consume hand-to-mouth every period. Specifically, they have no access to financial
markets. Workers, denoted by superscript T = L, work for the final good production in locations. On
the other hand, researchers, denoted by superscript T = R, work for intermediate good firms in order
to perform research and innovation. Wage rate of type T in location i is denoted by WT

i (t). Both types
of agents discount future utility with a rate of ρ > 0.

Per period utility flow rate is denoted by UT
i (t) and equals to

UT
i (t) = Aiε iCT

i (t) (3.2)

where Ai is location specific, time invariant amenity of location i, CT
i (t) is the rate of consumption of

type T agent in location i. Finally, ε i denotes individual’s idiosyncratic taste for the location. Budget
constraint is given by

CT
i (t) =

[
1 + d(t)− τ(t)

]
WT

i (t) (3.3)

For simplicity, I assume that firms are owned by a national portfolio, and profits are rebated to
individuals proportional to their labor income. Therefore, d(t)× WT

i (t) is the amount of dividends
distributed to an agent with a labor income of WT

i (t). Labor income tax rate is denoted by τ(t). Tax
rate is not location specific, but it can be potentially time varying, as the tax revenue collected is only
used to finance place-based R&D subsidies, as explained later. Government adjusts the tax rate every
period to finance its total R&D subsidy expenditures.

3.3 Migration

Agents update their location preferences, ϵ ≡ {ε i}N
i=1, with a Poisson arrival rate of ζ > 0. Arrival

of this shock is independent across individuals, time, and locations. Location taste for each i is
independently drawn from a Fréchet distribution

ε i
ind∼ Fréchet (ξ, 1)
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whose shape parameter is given by ξ > 1. Lower ξ indicates greater heterogeneity in location taste
across individuals. After receiving new location tastes, including for the location they currently live
in, individuals decide whether to move to another location or not. Migration between any pair of
locations is costless.

Let UT
i (ε, t) denote the discounted life-time utility, simply value, of type T living in location i with

a taste of ε. Agents choose to migrate to the location that provides the highest value for themselves.
That is, ex-post, they solve the following maximization problem after the realization of a location taste
vector e ≡ {ei}N

i=1 where ej denotes the jth component of vector e

max
j=1,...,N

UT
j
(
ej, t
)

(3.4)

Ex-ante, location tastes are uncertain for agents. It is useful to define the following function which can
be defined as the expected value of arrival of taste shocks

ŪT(t) ≡
∫ {

max
j=1,...,N

UT
j
(
ej, t
)}

fϵ (e) de (3.5)

where fϵ (·) denotes the joint density of location taste vector.6 The idea behind (3.5) is that agents
decide to relocate to the maximum value location. Equipped with this notation, we can derive the HJB
equation for the evolution of UT

i (ε, t) as follows

ρUT
i (ε, t) = AiεCT

i (t) + ζ
[
ŪT(t)−UT

i (ε, t)
]
+

∂UT
i (ε, t)
∂t

(3.6)

Derivation of (3.6) from discrete time can be found in Appendix A.1. In words, agents derive a flow
rate of utility of AiεCT

i (t) in location i. With a rate of ζ, they draw new tastes for locations, and decide
to migrate after which they earn an expected life-time utility of ŪT(t). Thus the utility return from
drawing new taste shocks is given by ŪT(t)− UT

i (ε, t). The last term stands for the time appreciation
in the value function.

Finally, the equilibrium number of workers and inventors located in i are denoted by Li(t) and
Ri(t), respectively, satisfying that ∑i Li(t) = L̄ and ∑i Ri(t) = R̄.

3.4 Production

There are two types of goods produced in the economy. Final good is used for consumption and as an
input for intermediate good production. The price of final good is normalized to one. Intermediate
goods are used as an input for the production of the final good. Workers are employed in final good
sector in each location. All goods are shipped across locations without any costs. Thus, the place of
production is not important apart from the fact that they create demand for labor.

6The function ŪT(t) does not possess a location subscript as UT
j

(
ej, t
)

is maximized over the whole set of locations.
Intuitively, it is because of the assumption that migration is costless. That is, the migration decision does not depend on the
origin location, as moving between any location pair has zero cost.
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Final goods. Production function of final good in location i is given by

Yi(t) = ĀLi(t)β

[
exp

(∫ 1

0
log ki(ν, t)dν

)]1−β

(3.7)

All locations have access to the identical production technology (3.7). Ā is a constant term to simplify
algebra.7 Li(t) denotes the amount of workers employed in location i, and ki (ν, t) denotes the amount
of intermediate good ν ∈ [0, 1] demanded by location i. The elasticity of substitution between factors
of production is one, and β represents the share of labor in the production of final good.

Final goods are produced in perfectly competitive markets. As trade is costless, the price of
intermediate good ν is identical in all markets. Denoting this price by p (ν, t), demand functions for
production factors are given by

WL
i (t)Li(t) = βYi(t)

p (ν, t) ki (ν, t) = (1 − β)Yi(t)

Intermediate goods and R&D. A unit measure of intermediate goods are differentiated, and each
variety is denoted by ν ∈ [0, 1]. These varieties are simply called products throughout the paper. Each
product is produced by a single intermediate good firm (or simply firm) in equilibrium, however, a
firm can produce multiple products. The intermediate good sector is identical to Klette and Kortum
(2004)’s model of heterogeneous firms and innovation. In addition to the fact that firms are defined by
the portfolio of products they produce, as in Klette and Kortum (2004), I make only one addition to
their structure, i.e. firms establish their single R&D lab in a location, and they perform their R&D and
innovation in this lab by hiring researchers. I assume that firms cannot change the location of the R&D
lab throughout their life-time.

Intermediate goods are produced from final goods with a linear technology

k (ν, t) = a (ν, t) y (ν, t)

where a(ν, t) is productivity, and y(ν, t) is the final good used in production. Unit elastic demand for
intermediate goods implies that the firm that holds the most frontier technology for a good ν captures
the whole market, and charges a markup so that the price charged is just equal to the marginal cost
of the second most productive firm. As the price of the final good is normalized to one, the price of
variety ν equals p(ν, t) = λa(ν, t)−1 where λ > 1 denotes the innovation step size as described below.

Firms invest in R&D to expand their product portfolio. Upon a successful innovation, the firm
comes up with a new production technology for a random product ν′ ∈ [0, 1] drawn from a Uniform
distribution on the unit interval, improving previous productivity a (ν′, t) by a constant factor of λ > 1,
and obtains the monopoly of the good with a higher productivity level of λa (ν′, t).8 As the price of

7Given the innovation step size parameter λ > 1 defined below, Ā =
(

λ
1−β

)1−β
.

8As all firms have a countable number of products in their portfolio, the probability of the event in which the firm
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final good is one in all locations, the relative marginal cost of past incumbent to that of the current
incumbent in any product line is always equal to λ. This is the reason as to why the maximum markup
that can be charged equals to λ as described above. The flow of profits per unit of time is then equals
to πY(t) for all products ν ∈ [0, 1], where π ≡

(
1 − λ−1) (1 − β) and Y(t) ≡ ∑n Yn(t) is the the total

output produced in the economy. As the rate of profit per product does not depend on the location
of production, firms are indifferent in where to produce their products. The production locations of
intermediate goods are indeterminate in the model because of the absence of trade costs, and the
identical cost of production factor for all firms, i.e. the final good, no matter where they locate their
production plant.

Let n denote the number of products owned by a firm, and i denote the location of the R&D lab of
the firm. The R&D production technology of the firm is given by

Zi (n, t) = [αi(t)Ri(n, t)]
1
θ n1− 1

θ , θ > 1 (3.8)

In equation (3.8), Zi(n, t) denotes the rate of innovation which is the Poisson arrival rate of a successful
innovation, and R denotes the number of researchers employed in the R&D lab located in i. Researchers
in location i benefit from the location research productivity αi(t) as described in Section 3.1. Moreover,
it is assumed that larger firms in terms of the number of products owned are more productive in
R&D. The parameter θ governs the curvature of the innovation production function with respect to the
number of inventors employed.

Firms are owned by all individuals in the economy. As they have linear preferences over time, the
rate of interest equals to the time discount rate ρ. Thus, the HJB function for the value function of a
firm with n products and located in i can be written as follows

ρVi(n, t)− V̇i(n, t) = nπY(t)︸ ︷︷ ︸
Profit

+ nx(t)
[
Vi(n − 1, t)− Vi(t)

]︸ ︷︷ ︸
Value loss from creative destruction

+ max
R

{
− (1 − si)WR

i (t)R︸ ︷︷ ︸
Cost of R&D

+
[
αi(t)R

] 1
θ n1− 1

θ︸ ︷︷ ︸
Innovation rate Zi(n, t)

[
Vi(n + 1, t)− Vi(n, t)

]︸ ︷︷ ︸
Value gain from inn.

} (3.9)

where Vi(n, t) denotes the sum of discounted future profits. The right hand side of (3.9) has multiple
terms. The first one is the total rate of profits generated from the whole product portfolio. The second
term is the loss in firm value due to creative destruction. x(t) denotes equilibrium aggregate rate of
creative destruction per product, which is defined as the total rate of innovation per unit of time from
all locations in the economy. Firms take this as given when deciding how much to invest in R&D.
As the firm has n products, the total rate of creative destruction that the firm faces equals to nx(t).
When other firms obtain a superior technology, the incumbent firm loses one of the products from its
portfolio. If the firm had a single product, then the firm exits in such a case. The last term is the value
stemming from the R&D investments. The first term in the maximization problem is the total cost of
innovation which equals to the wage bill of researchers employed, after si portion of it is subsidized by

invents on one of its products equals zero.
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the government. In particular, WR
i (t) denotes the equilibrium wage rate of inventors in location i, and

si ∈ [0, 1] denotes the R&D subsidy rate in the location. The second term indicates the expected return
from innovation which is the product of the rate of innovation and the value gain after firm adds an
additional product to its portfolio.

Proposition 1 The solution to the HJB equation (3.9) has the form Vi (n, t) = nvi(t)Y(t) where vi(t) denotes
the normalized monopoly value of owning a product. Furthermore, per product value vi(t), per product
innovation rate, defined as zi(t) ≡ Zi(n,t)

n , and per product inventor employment, defined as ri(t) ≡ Ri(n,t)
n are

independent of the size of the firm’s portfolio n and satisfy the following set of equations

zi(t) =
[
αi(t)ri(t)

] 1
θ (3.10)

(1 − si)wR
i (t)ri(t) =

1
θ

[
αi(t)ri(t)

] 1
θ vi(t) (3.11)

v̇i(t) =
[
ρ − g(t) + x(t)− θ − 1

θ
zi(t)

]
vi(t)− π (3.12)

where wR
i (t) ≡

WR
i (t)

Y(t) denotes inventor wage in i normalized by aggregate output, and g(t) ≡ Ẏ(t)
Y(t) is the growth

rate of aggregate output.

Proof. See Appendix A.2.
Proposition 1 states that the value of a product is independent of the size of the firm which is

measured by n. This results stems from the Cobb-Douglass specification for the innovation production
function (3.8).9 Furthermore, per product line innovation rates and inventor employments are also
independent of firm size. Equation (3.11) gives the demand for inventors by incumbent firms from a
location. Ceteris paribus, high research productivity in a location causes higher demand for inventors
for any given wage level. Therefore, αi(t) can be regarded as a demand shifter for inventors across
locations.

3.5 Entry

Location of R&D lab of incumbent firms is determined at the time of entry. There is a unit mass of
potential entrants in the economy who are frictionlessly mobile across regions. Similar to incumbents,
entrants employ researchers to generate a superior technology on a random product line ν ∈ [0, 1]. A
potential entrant in location i who employs r̃i(t) inventors generates an innovation rate of z̃i(t) which
is given by

z̃i(t) =
1
f
[
αi(t)r̃i(t)

] 1
θ (3.13)

The parameter f represents entry costs that are common to all locations, and the curvature parameter θ

is same across entrants and incumbents. Importantly, inventors benefit from location specific research
productivity αi(t) whether they are employed by incumbent firms or entrants. Denoting the value of

9A more detailed discussion on the implications of this R&D function can be found in Akcigit and Kerr (2018).

17



entry in location i by Ṽi(t), each potential entrant located in i solves the following entry problem

Ṽi(t) ≡ max
r̃

{
− (1 − si)WR

i (t)r̃︸ ︷︷ ︸
Cost of R&D

+
1
f
[αi(t)r̃]

1
θ︸ ︷︷ ︸

Inn. rate z̃i(t)

Vi(1, t)︸ ︷︷ ︸
Return

}
(3.14)

The return from innovation for entrants is equal to the market value of an incumbent firm on the same
location that starts with a single product.

Proposition 2 Let normalized value of being an entrant in location i be defined as ṽi(t) ≡ Ṽi(t)
Y(t) . Then,

ṽi(t) =
θ − 1

θ
z̃i(t)vi(t) (3.15)

Furthermore, inventor employment of a potential entrant is proportional to that of incumbent firms in their
location. As a result, per potential entrant innovation rate is also proportional to per product innovation rate of
the location. That is,

r̃i(t) =
1
F

ri(t) (3.16)

z̃i(t) =
1
F

zi(t) (3.17)

where F is a composite parameter defined as F = f
θ

θ−1 .

Proof. See Appendix A.3.
Proposition 2 can be proven easily by combining first order conditions to incumbent and entrant

problems, (3.9) and (3.14). The implication of this proposition is that entrant choices are closely linked
to incumbent firms in their location. The reason is that they have access to a similar R&D production
function with incumbent firms, and inventors benefit the location specific R&D resources, αi(t), both
in incumbent and entrant firms in a location. This structure is particularly chosen so that entry part of
the model simplifies considerably. The only mission of entrants in the model is to give rise to new
firms that exit frequently due to creative destruction x(t). However, entrants’ location choice is not
trivial. Indeed, they are indifferent in equilibrium between locations to perform R&D and enter to the
market. Labeling this equilibrium condition as free entry condition across locations, it can be formally
stated as10

ṽi(t) = ṽj(t), ∀i, j, t (3.18)

The free entry condition (3.18) pins down the equilibrium mass of potential entrants across locations
which are denoted by {ψ̃i(t)}i such that ∑i ψ̃i(t) = 1 for all t. Similarly, the total measure of product
lines owned by firms from location i in equilibrium is denoted by ψi(t) such that ∑i ψi(t) = 1. The
variable ψi(t) has an endogenous evolution over time as a result of firm innovation choices and entry
rates in the location. Intuitively, it increases in the number of potential entrants in i, ψ̃i(t) as more

10Normally, this condition should be stated at the non-normalized levels of entry values, i.e. Ṽi(t) = Ṽj(t) ∀i, j, t.
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entry means higher survival rate of location i firms compared to other regions. Formal derivations are
delegated to Appendix A.4.

3.6 Knowledge diffusion across locations

As described in Section 3.1, research productivity in locations depends on endogenous flow of past
ideas within the country. I assume that each innovation embeds a measure of ideas normalized to
one. After the invention of these ideas in an origin location j, they diffuse to the rest of the economy
in order to lay the foundation for the new ideas to be invented, possibly combined with other ideas
that have diffused from somewhere else. However, the diffusion process is not homogeneous and
perfect across location pairs. I assume that ideas diffuse between locations with a random time lag.
Specifically, let ωij > 0 be called the rate of diffusion from j to i. Then, the time lag for which an idea
originated in location j diffuses to location i is a random variable distributed as Exponential

(
ωij
)
.

The parameter of this distribution, ωij, varies across origin-destination pairs, and it is possible that
ωij ̸= ωji. It follows from this structure that the mean time lag of idea diffusion from j to i is equal
to 1/ωij. As ωij → 0, ideas never diffuse from j to i in finite time. On the contrary, as ωij → ∞, the
diffusion becomes instantaneous. The N × N matrix Ω =

[
ωij
]

holds the diffusion rate parameters,
and it is called the knowledge network throughout the paper.

In line with the empirical evidence in Section 2.2, it is also assumed that ideas get obsolete at an
exogenous rate of δ > 0.11 As ideas get older, they are more likely to be replaced by new and better
ideas.

In order to derive the evolution of Ki(t), where i is called the destination location, it is required to
define a variable which represents the number of ideas that are invented in j, but have not yet diffused
to i by time t. This variable is denoted by Iij(t). Then, the law of motion of Ki(t) can be derived as

K̇i(t) =
N

∑
j=1

ωij Iij(t)− δKi(t) (3.19)

The first term on the right hand side is a summation across all locations. The flow of ideas to location i
from j is equal to the rate of diffusion times the stock of ideas available for diffusion. On the other
hand, the second term captures the obsolescence of accumulated ideas.

How does Iij(t) evolves over time? Let xj(t) be the total rate of innovation in origin location j.
Then, it is equal to xj(t) = ψj(t)zj(t) + ψ̃j(t)z̃j(t). The inflow to the stock of not-yet-diffused ideas to a
particular location i equals the number of ideas embedded in an invention, which is normalized to
one, times the rate of innovation, xj(t). On the other hand, the outflow of ideas from this stock is due
to either diffusion to i or obsolescence. Hence, we can show that İij(t) equals to

İij(t) = xj(t)−
(
ωij + δ

)
Iij(t) (3.20)

Equation (3.19) suggests that the rate at which Ki(t) grows over time increases with ωij, and the size

11Obsolescence of old ideas can be endogenized by the creative destruction process of frontier technologies.

19



of the stock of ideas waiting to be diffused, Iij(t). This stock, on the other hand, is positively correlated
with the rate of innovation j, i.e. xj(t). Therefore, connectedness represented by ωij is not the only
determinant of the size of past ideas available for use in i. Locations that are particularly connected to
innovation hubs, i.e. locations with high xj(t), benefit from knowledge spillovers relatively more.

3.7 Market clearing conditions

Workers. Supply of workers in a location, determined from their migration decision (3.4), is equal
to the labor demand from final good producers in the location. Clearing intermediate good markets
along with local worker markets in each location gives rise to a very simple solution for the wage
rate of workers. Delegating the derivations to Appendix A.5, we can show that worker wage rate is
common across locations, and is given by

WL
i (t) = WL(t) =

β

L̄
Y(t), ∀i = 1, . . . , N (3.21)

In the absence of trade costs, the marginal productivity of workers across locations are equal, hence
they earn equal wages, which is proportional to aggregate output at all times. Thus, when workers
move across locations, they only value relative amenities. This implication of the model allows me to
control for amenity differences across locations by matching observed worker allocation. Therefore, the
remaining variation in inventor-to-worker ratio informs relative inventor wages, which is heterogeneous
across locations.

Total output of the economy equals to Y(t) = A(t)
1−β

β L̄, where A(t) is the aggregate productivity
index defined by

A(t) ≡ exp
[∫ 1

0
log a(ν, t)dν

]
(3.22)

which is a unit elastic aggregation across productivity of all intermediate goods. The source of growth
stems from innovations at the intermediate goods level. Furthermore, as shown in Appendix A.6, the
growth rate of aggregate productivity equals to Ȧ(t)

A(t) = log (λ) x(t). Thus, the growth rate of output is
given by

g(t) =
1 − β

β
log (λ) x(t) (3.23)

Inventors. Total supply of inventors in a location, Ri(t), is determined by inventor migration choice
given by (3.4). The demand, on the other hand, is equal to total inventor employment in a location,
which is the sum of incumbent’s and entrant’s demand for inventors. Hence, market clearing condition
for inventors in location i can be stated as

Ri(t) = ψi(t)ri(t) + ψ̃i(t)r̃i(t) (3.24)
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Government budget constraint. Government finances location specific R&D subsidies from the
taxation of individuals’ labor income. It is assumed that it holds period-by-period

N

∑
i=1

siWR
i (t)Ri(t) =

N

∑
i=1

τ(t)WL
i (t)Li(t) +

N

∑
i=1

τ(t)WR
i (t)Ri(t)

=⇒ τ(t) =
∑N

i=1 siWR
i (t)Ri(t)

∑N
i=1 WL

i (t)Li(t) + WR
i (t)Ri(t)

(3.25)

Total profits and their allocation across agents are derived in Appendix A.7.

3.8 Equilibrium and predictions of the model

We can now proceed with the equilibrium properties and the predictions of the model on equilibrium
wage rate of inventors and inventor allocation across locations. The particular equilibrium that is
considered in the paper is the balanced growth path (BGP) equilibrium in which the growth rate of the
economy g(t) is constant over time. Moreover, in this equilibrium, the growth rate of inventor wages
in all locations are equal to the growth rate of output. Thus, the model variables stay stationary in this
equilibrium after normalizing them with the aggregate output Y(t). In what follows, I will conjecture
that the model admits a BGP equilibrium, derive its properties, and then finally show that the initial
conjecture holds.

Knowledge network and research productivity. In BGP, location innovation rates xj are time in-
variant. Under this conjecture, the system of differential equations given by (3.19) and (3.20) have a
stationary solution given by Ki =

1
δ ∑N

j=1
ωij

ωij+δ xj. Thus location research productivity αi = ᾱ
1−φ
i Kφ

i is
also constant over time. Moreover, the rate of creative destruction which is the total innovation rate in
the economy is a constant and equals to x = ∑i xi.

Innovation rates. Replacing the aggregate creative destruction rate x into (3.23) implies that the
growth rate of the economy equals to g = 1−β

β log (λ) x. The second conjecture of the BGP equilibrium
is that the normalized inventor wage wR

i and inventors per product ri are constant over time. Under
these conjectures, we can show that v̇i(t) = 0, and stationary values zi, ri and vi satisfy the system of
equations given by (3.10), (3.11) and (3.12). Importantly, we have

vi =
π

ρ − g + x − θ−1
θ zi

(3.26)

Equation (3.15) combined with free entry condition (3.18) implies that per product rate of innovation in
locations are equal to a common rate, zi = zj = z for all i, j. Using the relationship between incumbent
and entrant innovations given by equation (3.17), we also have that entrants in all locations choose the
same rate of innovation z̃i = z̃ = z/F.
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Proposition 3 Let ψi denote the total measure of product lines owned by incumbent firms that are located in i,
and let ψ̃i denote the measure of potential entrants located in i. Then, in BGP equilibrium,

ψi = ψ̃i =
αiRi

∑N
j=1 αjRj

(3.27)

Proof. See Appendix A.8.
Although firms and entrants choose equal rates of innovations in any location, the difference

between regions in terms of innovative activity stems from the extensive margin. That is, in equilibrium,
firms located in more research productive regions obtain a higher share of market ownership which
is measured by the mass of product lines owned by local firms. The intuition is as follows. In
equilibrium, more entrants prefer high research productive locations. Therefore, the entry rate in
those locations are higher. Since all firms in the economy face the same exit probability which is
implied by the aggregate creative destruction rate x, a startup cohort from more productive locations
are more successful in surviving in the market because of their large population due to high entry
rate. Thus, in equilibrium, firms from research productive locations survive better and capture a larger
fraction of product markets in overall economy. Although I do not test the spatial firm dynamics
predictions of the model in this paper, the difference across locations stemming from heterogeneous
firm dynamics allows me to explain the fundamental source of high demand for inventors in certain
locations. In other words, in the model, the reason for high inventor demand in certain locations is not
directly due to the presence of high volume of innovative firms there. Instead, there is another factor,
endogenous research productivity of locations, which gives rise to both phenomena simultaneously,
i.e. high inventor demand and high number of innovative firms.

Inventor wage across locations. Another important prediction of the model is that inventor wages
are proportional to research productivity of locations. Next proposition shows this result.

Proposition 4 Let wR
i denote the inventor wage rate in equilibrium normalized by aggregate output. Then

wR
i =

1
θ

z1−θv
αi

1 − si
(3.28)

where z is per product line innovation rate common to all locations, and v = π
ρ−g+x− θ−1

θ z
following from (3.26),

and αi = ᾱ
1−φ
i Kφ

i is the research productivity of location i.

Proof. See Appendix A.9.
Equilibrium inventor wage in a location increases with research productivity of the location and

the subsidies provided for R&D activities. This prediction of the model allows me to pin down relative
research productivities of locations by exactly matching inventor allocation across US states. Next
section describes the migration behavior of agents in BGP, and shows the resulted allocation of workers
and inventors across space.
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Migration and inventor allocation in space. In order to simplify the migration problem of agents
given by (3.4), we first need to solve the value function UT

i (ε, t) in BGP.

Proposition 5 Agent value function UT
i (ε, t) as defined in Section 3.3 has an analytical solution in BGP

equilibrium as follows

UT
i (ε, t) =

AiεCT
i (t)

ρ + ζ − g
+

ζ

(ρ + ζ − g) (ρ − g)
Γ
(

1 − 1
ξ

)[ N

∑
j=1

(
AjCT

j (t)
)ξ
] 1

ξ

(3.29)

where Γ (·) is Gamma function, and CT
i (t) = (1 + d − τ)wT

i Y(t) is consumption of type-T in i that is
proportional to aggregate output. Thus, UT

i (ε, t) is also proportional to Y(t).12

Proof. See Appendix A.10.
Having equipped with agent values, the migration choice (3.4) simplifies considerably in BGP as

stated by the next proposition.

Proposition 6 Let
(
iT)⋆ be the location choice of agents of type-T in BGP, conditional on a set of location tastes

given by vector e. Then, (
iT
)⋆

= arg max
j

{
AjejwT

j

}
(3.30)

where ej is the jth component of e. Furthermore, let γT
i be the fraction of type-T population located in i. Given

worker and inventor wages in (3.21) and (3.28), the migration choice (3.30) implies

γL
i =

Aξ
i

∑N
j=1 Aξ

j

(3.31)

γR
i =

γL
i

(
αi

1−si

)ξ

∑N
j=1 γL

j

(
αj

1−sj

)ξ
(3.32)

Thus, number of workers and inventors in locations can be found as Li = γL
i L̄ and Ri = γR

i R̄.

Proof. See Appendix A.11.
Proposition 6 forms the basis for the identification of location specific research productivities.

Heterogeneity in amenities across locations, which is an important ingredient in inventor supply to
local labor markets, is controlled for by observed worker allocation in space. Simple structure of the
model aggregates possibly many different characteristics of locations under a single residual, the
amenity Ai. The assumption needed is that any such characteristics affect both types of individuals
identically when they decide where to relocate. Further implication of (3.32) is that inventor-to-worker

12The analytical expressions of d and τ in BGP equilibrium are given in proof.
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ratio in a location increases with its research productivity. That is,

αi

αj
=

1 − si

1 − sj

 (γR
i /γL

i
)(

γR
j /γL

j

)
 1

ξ

(3.33)

Equation (3.33) identifies relative research productivity of locations given taste dispersion parameter
ξ, as the right hand side of the equation is observable in the data.13 Given worker and inventor
allocations from the data, we can solve for relative research productivity. As αi = ᾱ

1−φ
i Kφ

i holds true,
we can further decompose αi in fundamental research productivity of location, ᾱi, and network effects
captured by Ki, as explained below.

Verifying initial conjectures. The predictions derived up to this point depend on the initial conjec-
tures that xi, wR

i and ri are constant over time. Proposition 4 proves that wR
i is indeed constant. From

equation (3.8), we can show that ri = zθ/αi, which does not vary over time. Following proposition
proves that xi is also a constant in BGP equilibrium.

Proposition 7 In BGP, the total rate of innovation in a location xi and per product innovation rate z can be
derived as follows

z =

[
F

1 + F

N

∑
i=1

αiRi

] 1
θ

(3.34)

xi = z1−θαiRi (3.35)

Further replacing xi in x = ∑i xi implies that the aggregate rate of creative destruction equals to

x =
1 + F

F
z (3.36)

Thus, aggregate growth rate of the economy is finally

g =
1 − β

β
log (λ)

1 + F
F

z (3.37)

which is proportional to z.

Proof. See Appendix A.12.
Proposition 7 verifies the initial conjecture that xi are constant over time. Moreover, equation (3.35)

13As discussed in Section 4, observed inventor allocation in patent data is not exactly equal to true inventor allocation, as
the data only consists of the inventors that applied for a patent in a given period of time. As will be shown in the same
Section, the model structure allows us to make a connection from the number of "successful" inventors who applied for a
patent to true number of inventors including "unsuccessful" ones.
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and definition αi = ᾱ
1−φ
i Kφ

i result in a nonlinear system of equations in {Ki}i such that

Ki =
1

δzθ−1

N

∑
j=1

ωij

ωij + δ
ᾱ

1−φ
j Kφ

j Rj (3.38)

Equation (3.38) is endogenous in the sense that knowledge spillovers across locations depend on
inventor allocation through their effect on innovation intensity in locations. Ceteris paribus, regions
that are more connected to the locations with large inventor populations benefit more from knowledge
spillovers. The reason is the direct effect of inventor population on idea creation in origin locations.
More inventors create more ideas per unit of time, and these ideas spill to other connected locations
faster. Furthermore, fundamental research productivity ᾱj and inventors Rj reinforce this effect, as
inventors are more likely to migrate to locations with high ᾱj.

3.9 Social welfare function and planner’s problem

In this section, social welfare function is derived based on agent value functions found in Proposition
5. It is assumed that the social planner cares about the ex-ante expected value of agents, ŪT(t), before
they draw idiosyncratic taste shocks and migrate to the location that provide the highest value for
themselves, which is given by definition (3.5). The function ŪT(t) represents the social welfare of
type-T agents because the planner internalizes agents’ migration decisions based on their idiosyncratic
location preferences, and she knows that they would migrate to the highest value locations. It is a
good choice in comparing long run equilibria under different counterfactuals, as it abstracts away from
transition periods during which agents relocate across locations between regions.

Utilizing the analytical expression for the agent values given by equation (3.29) and the fact that
idiosyncratic location tastes ε i are drawn from Frechet distribution, we can derive ŪT(t) as follows14

ŪT(t) = Γ
(

1 − 1
ξ

)
1

ρ − g

[
N

∑
i=1

(
AiCT

i (t)
)ξ
] 1

ξ

(3.39)

The derivation of this expression depends on the convenient properties of the Frechet distribution, and
can be found in Appendix A.10. It should be noted that this expression is independent of migration
frequency parameter ζ, since the function ŪT(t) represents the value of agents independent of their
initial locations. Secondly, the welfare of agents increase with the aggregate growth rate of the economy,
as higher growth implies higher consumption in the future. Finally, ŪT(t) can be considered as a
weighted average of location specific consumption rates, weights being the amenities in locations Ai.
The planner cares about an aggregate consumption across all locations, however, consumption in high
amenity locations are valued relatively more.

The final social welfare function is defined as a weighted average of worker and inventor welfares,

14This derivation implicitly assumes that the growth rate of the economy g always stays lower than the time discount rate
of ρ. Otherwise, agent value function explodes to infinity as the future consumption growth rate is higher than the discount
rate.
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where weights are chosen by the planner. It is defined as follows

W(t) ≡ ϕL L̄ × Ū L(t) + ϕRR̄ × ŪR(t)

= Γ
(

1 − 1
ξ

)
1

ρ − g

ϕL L̄

[
N

∑
i=1

(
AiCL

i (t)
)ξ
] 1

ξ

+ ϕRR̄

[
N

∑
i=1

(
AiCR

i (t)
)ξ
] 1

ξ

 (3.40)

The welfare weights for different agent types are given by ϕL and ϕR such that ϕL + ϕR = 1. In the
rest of the paper, these weights are taken equal to each other, i.e. ϕL = ϕR = 0.5.

The planner maximizes the social welfare function (3.40) by choosing location specific R&D subsidy
rates si ∈ [0, 1] subject to equilibrium condition in BGP. That is, the planner solves her problem in a
constrained environment with a single policy tool available to her, place-based R&D subsidy rates.
Taxation of R&D expenditures are not considered as a policy tool. In order to simplify the analysis,
the tax rate chosen to finance the cost of the policy is set uniformly across all the locations. That is,
while subsidy rates are location specific, labor income tax rate τ is uniform across locations. As the
knowledge spillovers between locations has a nonlinear form given by (3.38), I solve planner’s problem
numerically.

4 Quantification

The model parameters are quantified with a combination of three steps. First of all, several aggregate
parameters that are common to all locations are externally calibrated. Secondly, knowledge network
represented by the matrix Ω is estimated from patent citation flows and citation lags between US
states, which are the geographic unit of the analysis. Finally, I use the model to recover the remaining
location specific parameters—fundamental research productivity ᾱi, and amenity Ai—from data on
worker and inventor allocations in the US. Another aggregate parameter, entry cost f , is recovered
from exactly matching model implied entry rate and the data counterpart. The method, which I call
model inversion, infers location specific parameters that deliver worker and inventor location choices
across US states as equilibrium outcomes.

The main intuition behind the estimation procedure outlined above is based on two important
predictions of the model, given by equations (3.33) and (3.38). The first equation states that equilibrium
level of endogenous research productivity of locations, a combination of exogenous factors and
knowledge spillovers from other locations, can be inferred from relative ratio of inventor-to-worker
fractions across locations. This result depends on the main assumption of the model—both inventors
and workers value location amenities identically. After controlling for observed distribution of workers
across US states, the remaining variation in inventor allocation identifies other factors that only affect
inventors in their migration decisions, i.e. inventor wages. It should be noted that the implication of
the simple structure of the model that workers earn the same wage in each location does not alter
this line of reasoning. Even if worker wages were heterogeneous in a more complex model with
location and worker specific productivity differences across locations, such a structural model would
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have allowed us to control for them via the corresponding migration decisions. The important point
in this type of analysis is to have a structural model that would explain heterogeneous effects of
locations on the earnings of different types of agents in the economy—workers and inventors. The
model is intentionally kept simple for worker earnings characteristics so that the main intuition for the
identification of heterogeneous research productivity of locations is more explicit.

The second equation (3.38) describes knowledge flows between locations. The main ingredient of
this equation is diffusion rate parameters ωij which are specific to each state-pair. These parameters are
inferred from patent citations and citation lags between state-pairs. The main assumption that justifies
this exercise is a strong one, which is patent citations, although not perfect, reflect intertemporal
knowledge spillovers in the innovation process. Citing inventors cite previous inventions from which
they learn and inspire, and on which build. Thus, availability of this knowledge, Ki, increases their
research productivity, as in the model.

Table 1: Externally calibrated parameters

Parameter Description Value Source

ρ Time discount rate 0.05 Matching 5% annual real rate
β Labor share in production 0.6 Labor share
λ Innovation step size 1.15 General literature
θ Curvature of innovation function 2 General literature
δ Idea obsolescence rate 0.075 Caballero and Jaffe (1993)
ξ Location taste dispersion 2 Desmet et al. (2018)
φ Share of past knowledge in re-

search prod.
0.5 Externally set

L̄ Total mass of workers 1 Normalization
si R&D subsidy rate 0 Externally set

Externally calibrated parameters. Table 1 gives the list of externally calibrated parameters and
the corresponding values. Except place-based R&D subsidies, which are taken to be zero, none of
externally calibrated parameters vary across locations. One of the important parameters in this list
is location taste dispersion (ξ) which directly affects endogenous sorting of agents into locations. In
particular, although it does not alter the ranking of locations for estimated parameters, dispersion
parameter shapes the concentration of agents in equilibrium. Lower values for ξ means that agents
have more dispersed preferences for locations, hence in equilibrium less concentration arises. Another
important parameter is φ that governs the importance of intertemporal knowledge spillovers in the
innovation process relative to other location-specific exogenous factors. Higher φ corresponds to a
higher share of past knowledge in the creation of future inventions. In what follows, this parameter is
taken to be half, i.e. φ = 0.5.

The time frequency of the model is taken to be a year. As agents have linear preferences over
time, the equilibrium interest rate equals to ρ which is taken to be 5% (annual), which is common in
endogenous growth literature. Innovation step size λ = 1.15 lies in the range of several estimates in
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the literature. This parameter mainly affects the growth rate of the economy suggested by equation
(3.23). β is taken to be 0.6 which is in line with an average labor share of 60% for the period studied.
Innovation curvature parameter θ affects the marginal cost of innovation through the curvature of
R&D production function with respect to researchers employed. In other types of growth models in
which individuals are sorted between production and R&D, the curvature parameter has a direct effect
on the aggregate growth rate of the economy through allocation of total labor into research activity.
However, in this model, the total supply of inventors is assumed fixed, therefore, such implications
are absent. Finally, exogenous rate of idea obsolescence δ is taken from Caballero and Jaffe (1993)
where they estimate a similar citation equation given by (4.1) (will be explained below) in order to
estimate the extent of intertemporal spillovers between time periods. A value of δ = 0.075 implies
an idea obsolescence rate of 7.5% in a year. The sole magnitude of this variable has a direct effect on
the growth rate of the economy as higher obsolescence rate reduces the effectiveness of past ideas on
research productivity and growth.

It should be noted that the parameters that affect the aggregate growth rate of the economy only
alters the overall level of location-specific research productivity estimates. For instance, a higher δ

implies lower growth all else equal. In order to match the constant growth rate of 1.37%, model
inversion results in higher level of location specific research productivities without altering relative
research productivities across locations. A more detailed discussion on the identification of relative
research productivities can be found below.

4.1 Estimation of knowledge network

In this section, I derive an equation of citation probabilities across locations exploiting the idea diffusion
structure of the model. This equation is labelled as citation equation in the rest of the paper, and
estimated from patent citations data. We start with a thought experiment by asking what is the
probability of a patent issued in j at time s being cited by patents issued in i at a later date t ≥ s. First
of all, ideas become obsolete over time with a rate of δ. Assuming that every patent is embedded with
an idea intensity of one (normalization), the number of useful ideas remaining in the patent by time t
is given by e−δ(t−s). This is the average fraction of ideas that remain from time s to time t under the
assumption that ideas are subject to independent obsolescence shocks with a rate of δ per unit of time.
Secondly, I assume that inventors in location i at time t cite the patent if and only if they observe the
idea in their location by time t. Equivalently, the necessary and sufficient condition for citation is the
diffusion of the idea from j to i between time points s and t ≥ s. Under the assumption of exponential
distribution of diffusion lags, the probability that an idea diffuses from j to i by time t is given by
1 − e−ωij(t−s). As diffusion and obsolescence are independent events, the probability of citation is given
by the product of two probabilities, i.e. e−δ(t−s)

[
1 − e−ωij(t−s)

]
.

Citation probability is affected by a number of factors. All else equal, the time lag has two opposing
effects on citation probabilities. Citation probability is negatively correlated with time lag t − s because
of idea obsolescence channel. As ideas age older, the probability that idea stays useful by time t
declines (the first term). On the other hand, citation probability increases by the time lag, as it is more
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likely for ideas to be diffused to other locations as more time passes since their invention (second term).
Other factors are due to parameters δ and ωij. All else equal, higher rate of obsolescence decreases
citation probabilities between all location pairs uniformly. Finally, as idea diffusion rate ωij increases
between locations, then it becomes more likely that patents from the destination location i cites past
patents that originated from the origin location j in a fixed time interval of length t − s.

Under these assumption we can derive the maximum time lag at which patent citation probability is
maximized. Taking first order condition of maxτ e−δτ

[
1 − e−ωijτ

]
with respect to τ yields a location pair

specific time lag τ⋆
ij at which citation probability from i to j is maximized as follows, τ⋆

ij =
1

ωij
ln
(

ωij+δ

δ

)
.

τ⋆
ij decreases with ωij which implies that the peak citation probability is reached earlier as the rate of

diffusion between locations rises. This observation forms the basis for the identification of diffusion
rates from patent citation lags.

In order to derive an estimating equation of diffusion rates, I augment citation probability with
location-time fixed effects separately for citing and cited locations. Let Γciting

it denote the fixed effect
for citing location i at time t which represents the technology composition of citing patents issued at
time t in i. Similarly, Γcited

js denotes the fixed effect for the technology composition of cited locations.
These fixed effects aim to control for citing-cited technology composition of patent portfolios and its
effect on the level of citation probabilities. The identification of ωij comes mainly from the citation
lags. With the inclusion of fixed effects, the estimating equation becomes

Cts
ij

PitPjs
= Γciting

it × Γcited
js × e−δ(t−s)

[
1 − e−ωij(t−s)

]
(4.1)

The left hand side of equation (4.1) denotes the estimated patent citation probability which is
defined as the observed number of citations from i’s patents in time t to j’s patents issued in time s
(Cts

ij ) divided by the total number of all possible combinations between these two groups of patents, i.e.
the product of the number of patents that are issued at time t in i (Pit) and the number of patents that
were issued at time s in j (Pjs). This equation is just equal to Caballero and Jaffe (1993) and Cai et al.
(2022)’s citation equations, the only difference being it is modified in terms of citing-cited locations.15

Equation (4.1) is estimated by nonlinear least squares with an iterative minimization procedure by
fixing the obsolescence parameter δ = 0.075 as estimated by Caballero and Jaffe (1993).

4.2 Model inversion

Equipped with the estimates of state-pair diffusion rates ωij from patent citation lags, we can finalize
the quantification of the model with an inversion process by which location specific parameters, ᾱi

and Ai, are recovered. Table 2 shows the target moments from the data used, and the corresponding
identified parameters. First of all, worker allocation across US states is targeted in order to pin down

15In Caballero and Jaffe (1993), citing and cited fixed effects are included for time periods t and s in order to capture
different number of ideas generated in these time periods and compositional differences as discussed above. They mainly
focus on intertemporal spillovers between time periods by estimating a single diffusion rate parameter. In this paper, I
estimate location-pair diffusion parameters by adding a spatial aspect to their citation equation.
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Table 2: Targeted moments and identified parameters

Target Target Notation
Identified
Parameter

Parameter
Notation

1. Allocation of
workers across
locations

γL
i , i = 1, . . . , N (Relative)

amenity
Ai, i = 2, . . . , N
with A1 = 1

2. Allocation of
patenting inventors
across locations

γR⋆
i = γR

i , i = 1, . . . , N
(Relative)
exogenous
research prod.

ᾱi,

3. Total number of
patenting inventors R̄⋆ = F2+1

F2+F zR̄
Total number of
inventors

R̄

4. Aggregate entry rate z̃ Entry cost f

5. Aggregate growth
rate g = 1−β

β log(λ)x
Level of
exogenous
research prod.

ᾱ1

amenity distribution across locations. The mapping between the two is given by equation (3.31).
Denoting the number of locations by N, we have N − 1 many moments to match, as the sum of
fractions of workers across states adds up to one. Therefore, we can recover location amenities only up
to a scale. After normalizing the amenity in the first location to be one, i.e. Ai = 1, the equation (3.31)
implies

Ai =

(
γL

i

γL
1

) 1
ξ

Higher relative worker share in a location suggests higher level of amenities in the location, as worker
wages are equalized across locations. Thus, the only heterogeneity remaining in worker migration
decisions stems from location specific characteristics Ai.

Secondly, observed inventor allocation across US states is utilized to estimate fundamental research
productivities of locations, {ᾱi}N

i=1, only up to a scale. As discussed above, observed number of
inventors in the patent data cannot be directly mapped to the number of inventors in the model, as
not all inventors apply for a patent in a given year. To back out the true inventor allocation from the
data, I utilize the model’s predictions on innovation probabilities.

In the model, the rate of probability of patenting (or innovation) per product line is given by zdt,
where dt is the length of the time interval considered, which is taken as one year. As per product
inventor employment in location i is given by ri, the number of inventors that come up with a new
invention per product line in a time interval of dt is equal to zdt × ri. Similarly, z̃dt × r̃i many inventors
who are employed by entrants are successful in patenting. Denoting the total number of successful
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inventors in i as R⋆
i , and taking dt = 1, we have

R⋆
i = ψizri + ψ̃i z̃dtr̃i =

(
1 +

1
F2

)
zψiri

From inventor market clearing (3.24), we also have

Ri = ψiri + ψ̃i r̃i =
F + 1

F
ψiri =⇒ ψiri =

F
F + 1

Ri

Substituting this expression into the first one yields a relationship between R⋆
i and Ri such that

Ri =
F2 + F
F2 + 1

1
z

R⋆
i =⇒ R̄ =

F2 + F
F2 + 1

1
z

R̄⋆

where R̄⋆ is the number of successful inventors nationwide, and the second expression follows from
the summation of the first across all locations. Therefore, for a given estimate of F = f θ/(θ−1) and
model implied z, we can map observed R̄⋆ to the unknown R̄. Lastly, the fraction of all inventors
located in i in the model, γR

i , equals to i’s share of successful inventors, γR⋆
i ≡ R⋆

i /R̄⋆. This can be
seen by dividing both equations to each other which gives rise to γR

i = γR⋆
i . Note that γR⋆

i and R̄⋆ are
observed from the patent data.

Fundamental research productivities ᾱi are recovered in two steps. Firstly, equation (3.33) is used to
back out endogenous relative productivities αi, after replacing γR

i with γR⋆
i . The intuition is explained

as before, i.e. after controlling for amenity differences by the observed worker allocations, we can
then estimate other factors that alter inventor earnings across locations. These factors are captured by
location level resources for R&D and innovation. Secondly, we can use the definition αi = ᾱ

1−φ
i Kφ

i and
the endogenous formation of Ki across locations using model implied location innovation rates. In
particular, an iterative procedure is employed using equation (3.38) given estimates of αi to recover
exogenous research productivities across locations ᾱi up to a scale.

The aggregate entry rate in the model is equal to z̃, as all potential entrants choose the same
innovation rate no matter where they are located. Relevant entry rate for the period analyzed is 9%,
taken from Akcigit and Ates (2023). Entry cost parameter is pinned down by matching the entry rate
with the data. Finally overall level of ᾱi is recovered by matching the model implied growth rate and
its data counterpart which is taken to be 1.37% from Akcigit and Ates (2023). High absolute level of
research productivity increases the frequency with which inventors come up with new ideas, thus
increasing the growth rate of aggregate productivity A(t).

5 Results

In this section, I present estimation results and resulted optimal place-based R&D policies in two
stages. In the first stage, I assume that the US economy is comprised only of the top 10 states in terms
of patenting. The reasons I focus on these states are three folds. Firstly, it is easier to discuss estimation
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Table 3: Top 10 states in patenting

State code State name Patent share in 2005

CA California 25%
TX Texas 7%
NY New York 6%
MA Massachusetts 5%
WA Washington 4%
MI Michigan 4%
IL Illinois 4%
NJ New Jersey 4%

MN Minnesota 4%
PA Pennsylvania 3%

Total 65%

results and the resulted optimal policy with fewer locations. Secondly, these states are well-known as
being innovation locomotives of the US. Lastly, patent citation flows are the most intensive among
these regions. In order to draw conclusions on the effect of knowledge network on parameter estimates,
I estimate two versions of the model. The first one is performed assuming φ = 0, i.e. the knowledge
spillovers across regions are shut down. The second estimation is performed for the baseline model in
which knowledge spillovers are active, φ = 0.5. After comparing estimation results, I proceed with the
implied optimal policy for both estimations. Finally, I do several counterfactual exercises in order to
assess the importance of knowledge spillovers and amenities for the characterization of optimal policy.
In the second stage, I perform the estimation for the whole US economy, i.e. 51 states including DC.
Qualitatively similar effects of knowledge spillovers arise in the full estimation as in the case for top 10
states. I, then, solve for the optimal R&D policy and discuss welfare implications.

5.1 Results for top 10 patenting states

In this section, it is assumed that the US economy is comprised of only ten states that produced the
most of patents in 2005. Total share of these states in aggregate patenting is 65%. California (CA)
comes first with a share of 25% followed by Texas (TX) with 7% and New York (NY) with 6%. The
smallest shares belong to New Jersey (NJ), Minnesota (MN) and Pennsylvania (PA) with respective
shares of 4%, 4%, and 3%. Table 3 illustrates the huge concentration of patenting even among the top
ten most innovative locations.16

Table 4 illustrates parameter estimates for the sample states. In this version of the estimation,
the knowledge network is inactive, i.e. φ = 0. Endogenous research productivity αi is exactly equal
to location fundamentals measured by ᾱi. The most research productive state is estimated to be
Washington with a research productivity of 1.8 times that of the least productive state Pennsylvania.

16Worker and inventor shares are recalculated among ten states. For instance, California, the state with the highest share
of inventors, is home to 22% of all inventors in the US, while, among the top 10 states, its share increases to 35%. Other two
aggregate targets, growth and entry rates, are kept same in their original values, 1.37% and 9%, respectively.
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Table 4: Parameter estimates for top 10 states - Without knowledge spillovers

States Parameters Allocations

Code Name Prod. ᾱ Amenity A Inventors γR Workers γL

WA Washington 0.48 0.42 0.08 0.04
MA Massachusetts 0.42 0.48 0.08 0.06
CA California 0.42 1.00 0.35 0.24
MN Minnesota 0.38 0.43 0.05 0.04
MI Michigan 0.34 0.54 0.07 0.07
NJ New Jersey 0.32 0.52 0.06 0.07
NY New York 0.29 0.75 0.09 0.14
TX Texas 0.29 0.79 0.10 0.15
IL Illinois 0.28 0.63 0.06 0.10
PA Pennsylvania 0.27 0.62 0.06 0.09

Note: Rows are ordered from the highest ᾱ to the lowest

In terms of amenities, California has the highest, while Washington has the least, less than half
of California. Although California has the highest fraction of inventors among these states, it also
has the largest employment share with 24%. For the identification of research productivities across
locations, number of inventors alone is not informative as inventors also value location amenities.
As discussed in Section 4.2, the ratio of inventor share to worker share is the moment that identifies
research productivities. As an example, the most research productive state Washington is home to 8%
of inventors with an employment share of 4%. The ratio of the two is higher than that for California.
Another example is the second largest state in terms of inventor count, Texas. 10% of inventors
among ten states are observed to locate in Texas, while 15% of employment takes place in there. Thus,
inventors choose Texas relatively less frequently than workers, informing the model inversion about
relatively lower research productivity in Texas. On the contrary, amenities are directly identified by
worker shares putting Texas on the second place in terms of relative amenities.

When knowledge spillovers are allowed between locations, the ranking of states in terms of research
productivities change significantly. In order to proceed with model inversion, first knowledge diffusion
rates ωij are estimated from the patent citation (4.1). Figure 7 depicts the estimated network matrix Ω
in a heatmap plot. In this figure, origin states, represented as columns, refer to states from where ideas
diffuse to the rest. Destination states, represented as rows, are the states to where ideas diffuse from
origins. Some observations are in order. Firstly, diagonal terms have the highest values suggesting that
within location spillovers are stronger than spillovers across different states, in line with the findings
of Jaffe et al. (1993). Secondly, knowledge network Ω is observationally a symmetric matrix. For
instance, CA exports knowledge mostly to WA, TX, PA, NY, and NJ (CA column), and it also imports
knowledge mostly from these states (CA row). Thus, we can conclude that if i is connected to j, it is
likely that j is also connected to i. Connections between states are mostly bilateral. Thirdly, as can be
inferred from columns, California, New York, and New Jersey are the most upstream states in the flow
of ideas. That is, these states export ideas relatively faster than other states. Lastly, Minnesota (MN)
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Figure 7: Estimated knowledge network Ω for ten states

stands alone as being the least connected state both in terms of idea exports and imports.
Table 5 shows parameter estimates based on the estimated Ω matrix. Amenity estimates are

same as before, however, inclusion of knowledge network to estimation alters the estimates for ᾱi. In
particular, Minnesota rises to second place in terms of research productivity while California declines
to fifth place. The reason is that observed number of inventors in Minnesota (relative to its workers)
can only be rationalized with a high ᾱi estimate as Minnesota stands alone as the state that benefits
the least from knowledge spillovers. Similarly, overall research productivity αi in California mostly
stems from network effects so that in terms of exogenous research productivity ᾱi, California declines
from third to fifth place.

Table 5: Parameter estimates for top 10 states - With knowledge spillovers

States Parameters

Code Name Prod. ᾱ Amenity A

WA Washington 0.18 0.42
MN Minnesota 0.17 0.43
MA Massachusetts 0.14 0.48
MI Michigan 0.12 0.54
CA California 0.11 1.00
NJ New Jersey 0.07 0.52
IL Illinois 0.06 0.63
TX Texas 0.06 0.79
NY New York 0.05 0.75
PA Pennsylvania 0.05 0.62

Note: Rows are ordered from highest ᾱ to lowest
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Figure 8: Inventor allocation under optimal policy - Without knowledge spillovers

Note: States are ordered left-to-right from the highest ᾱ estimate to the lowest under "without" spillovers estimation.

Optimal policy. The change in estimated allocation of exogenous research productivity across
locations has implications on the optimal policy. In an environment without knowledge spillovers
between locations, optimal policy only corrects the dispersion in idiosyncratic location preferences
of inventors. In decentralized equilibrium without spillovers, there is always positive measure of
inventors who idiosyncratically value the least research productive state the most among all, although
they earn a very low wage there. They compensate the low productivity (and resulted low earnings
and consumption) with their private value for the location. However, this is not aligned with the
objectives of the planner, as the planner also cares about the effect of inventors on the rate of economic
growth. Thus, optimal policy aims to relocate researchers towards the most research productive
states by place-based R&D subsidies. Relocation of all of the inventors to the most productive state is
extremely costly in terms of the forgone consumption due to taxation, as Frechet taste distribution
has heavy tails. The trade-off that the planner faces is the tension between higher consumption in the
future due to higher output growth, and lower current consumption due to taxation.

Figure 8 shows the inventor allocation under optimal policy for the case without knowledge
spillovers (maroon bars) compared to the observed allocation in the data (gray bars). In order to
achieve the optimal allocation, the planner subsidizes R&D expenditures only in four states: WA by
41%, MA by 31%, CA by 30%, and finally MN by 19%. This policy is financed by a permanent 1.5%
uniform labor income tax. Under optimal policy, inventor allocation is more concentrated towards the
most three productive states, WA, MA and CA. An interesting case is Minnesota (MN). Although it
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is subsidized, Minnesota experiences a decline in its inventor share under the optimal policy. That
is, inventor share of MN would have been lower without subsidies. Optimal policy causes a welfare
increase of 0.47% in consumption equivalent terms, while the long run growth rate of the economy
rises from 1.37% to 1.41%. This exercise verifies the main intuition behind the workings of the optimal
policy. Although there are no knowledge spillovers in this version of the model, the planner still wants
to correct for the dispersion in idiosyncratic location tastes across inventors, as explained above. As
spillovers are absent, the welfare gain from the policy is moderate.

When knowledge spillovers are present, the optimal policy starts reacting to the linkages between
locations. In the baseline model, inventors do not internalize their effect on the productivity of other
inventors through knowledge spillovers. While original incentive of the planner to relocate inventors
to most productive states is still operating, spatial linkages makes the policy nontrivial. The trade-off
that the planner faces is between research productivity and network centrality of locations. It might
not be optimal for the planner to relocate inventors to most productive states if those locations are
not connected well with the rest of the geography. Instead, it might be a better strategy to relocate
inventors to moderately productive states but with strong linkages to the rest, both in upstream and
downstream sense. By this way, the planner maximizes the extent of knowledge spillovers. It should
be also noted that research productivity and growth considerations are not only factors that shape
the optimal policy. Relative amenities directly affect the social welfare function (3.40). The effect
of amenities on optimal policy is through two channels. The first channel is the direct effect. All
else equal, the planner wants to benefit from highest amenities in the country. The second channel
is through the effect of amenities on the cost of the policy. If a location simultaneously have both
high amenity and research productivity, then reallocation of inventors to that location would be less
costly in terms of taxation, as inventors would be more likely to migrate to that location due to high
amenities in there. However, if amenities and research productivities are not aligned well, then the
planner has to subsidize R&D very heavily in order to be able to convince inventors to migrate there.
This increases the taxes imposed, hance the cost of the policy.

In order to assess the discussed effects of the knowledge network on policy, place-based R&D
subsidies are solved for the baseline model with knowledge spillovers and compared to the previous
case. That is, optimal policy is solved for the parameterization given by Table 5. Figure 9 shows the
inventor allocation under the optimal policy in this case (depicted by red bars) while comparing it to
previous policy and the data. In this case, subsidy rate in WA and CA rises to 49% in each, whereas
it declines slightly to 30% for MA. MN is not subsidized anymore. Qualitatively, the planner stops
allocating inventors only to the most productive states. The most clear example is Minnesota (MN). In
the new policy, Minnesota experiences a stark decline in its share of inventors. The reason is that it is
not well connected within the knowledge network (as suggested by the Ω matrix in Figure 7), so the
social value of high research productivity in Minnesota decreases as other locations do not benefit
much from the spillovers from Minnesota. Similarly, Massachusetts (MA) also experiences a decline in
its inventor share. In the new policy, inventors are relocated towards WA and CA mostly from MA
and MN.
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Figure 9: Inventor allocation under optimal policy - With knowledge spillovers

Note: States are ordered left-to-right from the highest ᾱ estimate to the lowest under "without" spillovers estimation.

Inventor concentration across locations under the new policy results in higher than before. In
addition to the network effects discussed above, another reason for this result is that knowledge
spillovers are the strongest within states (high diagonal elements of Ω). Therefore, inventors cause
an agglomeration type of spillovers in their own locations, which calls for more concentration under
optimal policy. Finally, welfare increase in a model with knowledge spillovers is found to be higher,
i.e. 1.68% consumption equivalent increase in welfare with a growth rate of 1.49%. Although the
size of welfare effects are not directly comparable between two models, intuitively, we can argue
that knowledge spillovers and resulting increasing returns to scale makes the optimal policy more
effective in terms of welfare increases. In order to draw more meaningful comparison between the
two policies, i.e. one that respects the knowledge spillovers between locations, and the other that does
not consider linkages, we can implement the first policy within the estimated model with knowledge
network. This exercise results in a welfare increase of 1.20% in consumption equivalent terms, which
is 0.48 percentage points lower than the welfare increase under the policy that respects the knowledge
spillovers.

5.2 Results for all states

In this section, I present estimation results of the model with all the states in the US (51 states
including DC). Then I compare model implied untargeted moments with the data in order to validate
parameter estimates. Finally, I solve the optimal place-based R&D subsidy policy. My findings can be
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Figure 10: Estimated knowledge network Ω

summarized as follows. Model fit to untargeted moments is good giving confidence on the model’s
validity. Optimal policy calls for concentration of inventors in a few states on both West and East
coasts such as Washington, Massachusetts, California, and Vermont. Social welfare increases 1.8% in
consumption equivalent terms as a result of the proposed place-based R&D policy. Increase in welfare
is associated with a 0.14 percentage points increase in annual growth rate of the economy, from 1.37%
to 1.41%.

Estimated knowledge network Ω. The heatmap of estimated Ω matrix is given by Figure 10. Similar
results are observed in the full estimation of the matrix. First of all, diagonal elements are considerably
higher than off-diagonal elements suggesting strong within location spillovers. It can be argued that
strength of connections between states are usually bilateral. Some states are isolated from the rest of
the network both in upstream and downstream sense, such as Idaho, Montana, South Dakota, West
Virginia. The (unweighted) mean of ωij is 0.31 suggesting a lag of 3.2 years in idea diffusion across
states. The histogram of estimates for diffusion rates ωij is plotted in Figure 11 suggesting a bimodal
distribution of pairwise diffusion rates across US states.

In order to test the validity of ω estimates, I regress estimated ωij on some observed characteristics
of state pairs. These are pairwise physical distance between i and j, and academic citation shares,
migration flows, number of air passengers, and trade flows, both from i to j, and from j to i. Only the
coefficient estimates of physical distance and academic citation shares are significant, and their signs
are as expected. In words, estimated ωij decreases in physical distance between i and j. Moreover, it
is positively correlated with probability of academic papers published in i citing papers from j, and
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Figure 11: Kernel density of diffusion rate estimates

vice versa. Binscatter plots for the relationship between ωij estimates and observed characteristic are
shown in Figure 12.

Figure 12: Estimates of ωij and their correlates

Location specific parameter estimates. Figure 13a illustrates the distribution of estimated research
productivity ᾱ across US states. The most research productive state is estimated to be Washington
with a value of ᾱ = 0.303 followed by Massachusetts and California. The least research productive
state is Mississippi with a value of ᾱ = 0.024. The mean of ᾱ estimates is 0.110, and their standard
deviation is 0.063. As is clear from Figure 13a, physical proximity is an important determinant of the
spatial distribution of ᾱi. That is, closer states are also similar in terms of research productivity. West

39



MD

IA

DEOH

PA
NE

WA

AL

ARNM

TX

CA

KY

GA

WI

OR

MO
VA

TN

LA

NY

MIID

FL

IL

MT

MN

IN

MA

KS

NV

VT

CT

NJ

DC

NC

UT

ND

SC

MS

CO

SD

OK

WY

WV

ME

NH

AZ

RI

AK

HI

0.1 0.2 0.3

Estimated research productivity

(a) Research productivity ᾱi
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Figure 13: Estimated location specific parameters

coast states represented by Washington, Oregon, California, and perhaps including Idaho are most
productive states in research along with a clustering on the East coast represented by Massachusetts,
Vermont, Connecticut, and New Hampshire. In the Midwest, Minnesota and Michigan stand out.

Amenities, on the other hand, do not seem to be correlated much with research productivities.
California has the highest amenity estimate followed by Florida, New York, Texas, Illinois.

Model fit for untargeted moments. In this section, the model is tested in terms of its fit to untargeted
moments such as relative patenting rates of states, GDP shares, share of states in total R&D expenditure,
and finally, R&D intensity of states defined as the ratio of R&D expenditure to state’s GDP. The model
performs well along these dimensions giving confidence on the validity of the model. Rate of patenting
in a state in the model is given by xi. The share of state’s patents produced in a given year in total
number of patents produced in the US can be measured by xi/ ∑i xi. Figure 14a shows the comparison
of this moment between model and the data. Most of the observations lies on the 45 degree line
implying almost perfect match. Another untargeted moment is GDP share of states. The GDP of a
state in the model economy is defined as the total income of agents (including profits) located in the
state, Yi ≡ (1 + d)

[
WL

i (t)Li + WR
i (t)Ri

]
. Share of state’s GDP in total US GDP is given by Figure 14b

showing a very good match between model and the data. States vary slightly around the 45 degree
line.

Finally, I check implied state level R&D expenditures from the estimated model, and compare it to
the data obtained from National Science Foundation’s (NSF) National Patterns of R&D Resources for
the year 2004. This data provides state level R&D expenditures of private industry and government.
Only industry R&D expenditures are included in state level R&D spending. In the model, state level
R&D expenditure is given as the total wage bill of researchers employed in both incumbent and entrant
firms. It is equal to WR

i (t)Ri, as R&D subsidy rates are taken to be zero in the benchmark estimation.
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(a) State’s share in patenting (b) State’s share in GDP

Figure 14: Model’s fit to untargeted moments

(a) State’s share in total R&D expenditure (b) State level R&D intensity

Figure 15: Model’s fit to untargeted moments

Figure 15a compares the share of state’s R&D expenditures in the model and in the data. Again, the
model fit is very good in terms of relative R&D spending across states. On the right panel, state level
R&D intensities are plotted. R&D intensity of a state is defined as the ratio of R&D expenditures to
state level GDP. The model predicts a higher level of R&D intensity for most of the states relative to
the data. However, model implied moment and data counterpart are positively correlated.

5.3 Optimal policy

Under the optimal place based R&D subsidy scheme, only 9 states receive R&D subsidies. Most
heavily subsidized state is Washington with 57%, and the least subsidized state is Colorado with 9%.
Remaining states do not receive R&D subsidies. Table 6 lists the R&D subsidy rates across states
from the highest to the lowest. On the West coast, neighbor states California, Oregon and Washington
receive R&D subsidies as this region of the country is the most R&D productive, and they are relatively
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Table 6: Subsidy rates under optimal policy

State code State name Subsidy s

WA Washington 0.57
MA Massachusetts 0.48
CA California 0.48
VT Vermont 0.39
MN Minnesota 0.35
OR Oregon 0.34
NH New Hampshire 0.32
CT Connecticut 0.24
CO Colorado 0.09

connected with the rest of the states. Minnesota is the only state that is subsidized in the Midwest,
while the small region around Massachusetts benefit from subsidies as well. In terms of inventor
allocation under the optimal policy, only seven states out of nine increase their inventor share. These
two states that experience a reduction in inventors are Connecticut and Colorado. The reason is that
concentration of inventors under the optimal policy is strongly towards the most research productive
states, but the planner does not want to relocate much from Connecticut and Colorado. By R&D
subsidies the decline in these two states is mitigated.

The optimal policy calls for concentration of inventors in top productive states such as Washington,
Massachusetts, and California. The percent change in number of inventors between the optimal policy
and the data for each state is depicted in Figure 16. Except the top five states, the rest lose almost half
of their inventors under the new allocation. Washington experiences a 169% increase in its inventors
relative to the data. Its share rises from 5.2% to 14%. Massachusetts and California observe similar
increase in their inventors, 79% and 77%, respectively. Under the new allocation, California still has
the highest share of inventors with 39.2%. Among the losing states, small states lose the most. Table 7
shows the top 5 gaining and losing states in terms of inventor counts under the optimal policy.

The reason for increased concentration of inventors under the policy is close geographical connec-
tions between states and strong within state knowledge spillovers. Although there is no reduced form
agglomeration spillovers in the model, high within diffusion rates ωii implies local inventors benefit
most from the local spillovers. This induces the planner to relocate more to the most productive states.
However, geographical proximity also seems an important determinant of new inventor allocation as
diffusion rates and proximity are strongly correlated as shown previously.

The overall welfare increases 1.8% in consumption equivalent terms. This welfare increase is
achieved even without allocating the labor force towards being researchers, rather it is due to geo-
graphical reallocation of a constant pool of inventors in the country. This policy exercise shows the
importance of knowledge spillovers even inside a country between localities, and points to a significant
level of welfare loss due to imperfect knowledge spillovers specific to the innovation process. The
1.8% increase in welfare is associated with a 0.14 percentage points increase in the growth rate of
the economy. As inventors benefit more from knowledge spillovers, their research productivity rises
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Figure 16: Percent change in number inventors under policy

helping them innovate more frequently. The growth rate rises from the targeted value 1.37% to 1.51%
under the optimal policy.

Table 7: Top gaining and losing states

State code State name γR γR⋆ 100 R⋆−R
R

Top 5 gaining states

WA Washington 5.2 14.0 +169%
MA Massachusetts 5.1 9.2 +79%
CA California 22.2 39.2 +77%
VT Vermont 0.40 0.53 +33%
MN Minnesota 3.4 3.9 +16%

Top 5 losing states

WV West Virginia 0.14 0.06 -58%
ND North Dakota 0.11 0.05 -56%
SD South Dakota 0.06 0.03 -55%
LA Louisiana 0.33 0.15 -54%
OK Oklahoma 0.49 0.22 -54%
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6 Conclusion

In this paper, I study the spatial allocation of inventors across US states and the effect of their location
choice on the aggregate rate of innovation and growth, with a particular focus on knowledge spillovers
across states. Empirically, it is shown that innovative activity is spatially concentrated more than other
indicators such as employment and GDP. Furthermore, distribution of inventor to worker ratio across
US states is highly right skewed suggesting that inventors prefer certain locations more than other
workers. These locations coincide with the innovation hubs of the US such as California, Washington
and the Northeast corridor. Finally, I show the extent of spatial concentration in patent citations, and
argue that the variation in patent citation lags across citing-cited state pairs is particularly informative
on the extent of knowledge linkages between them. These spillovers are intertemporal in the sense
that future inventions benefit from the old ideas previously invented, which reflects itself as citations
between patent documents.

On the theory side, a novel endogenous growth model is built with inventor and worker migrations
in space, and mobile entrants who create firms in which inventors are employed for R&D purposes.
The model is equipped with a knowledge diffusion network between locations which is estimated
from patent citations. Inventors in the model do not internalize the effect of their location choice on
the diffusion of ideas to other locations. Thus, the planner corrects for this externality by place-based
R&D subsidies while taking into account heterogeneous linkages between US states.

Location specific parameters, amenities and exogenous research productivities, are recovered with
a model guided inversion procedure which exactly matches observed worker and inventor allocations
across US states. The unknown knowledge diffusion network is estimated from a patent citation
equation that is derived from the model. It is shown that states that are close in distance are more likely
to be connected, academic citation flows are positively correlated with the strength of connections,
and within-location spillover rates are the highest. Based on all parameter estimates, the optimal
placed based R&D subsidy policy is found as to maximize the social welfare function. The policy
calls for even more spatial concentration of inventors although the model is absent from standard
within-location agglomeration spillovers. Moreover, the policy respects the flow of ideas in space
in the design of the place-based subsidy rates. The optimal policy increases the social welfare by
1.8% in consumption equivalent terms. The increase in welfare is associated with a 0.14 percentage
points increase in the aggregate growth rate of the economy due to the maximum utilization of the
knowledge spillover network between states as a result of the policy.
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Appendix

A Model

In this appendix section, some of the model derivations that are skipped in the main text and proofs
of propositions are provided.

A.1 Derivation of agent HJB equation

Let UT
i (ε, t) denote the life-time utility of type-T agents living in location i, conditional on taste ε. For

an infinitesimal time interval of dt > 0, the HJB equation can be written in discrete time as follows

UT
i (ε, t) = AiεCT

i (t)dt

+
1

1 + ρdt

[
ζdt ·

∫ (
max

j
UT

j (ej, t + dt)
)

fϵ(e)de + (1 − ζdt) · UT
i (ε, t + dt)

]
(A.1)

The first term in the right hand side of equation (A.1) represents the utility flow due to consumption,
amenities and location taste. The second term represents continuation value discounted by time
preference parameter ρ. This continuation value is the expected value of drawing a migration shock
whose rate is ζ. If agent updates location preferences, then she migrates to the best location for herself
in terms of the discounted sum of utility. Otherwise, she stays in the same location.

Using notation defined by equation (3.5), we can organize the terms in (A.1) and take limit dt → 0
to derive the HJB equation in continuous time given by (3.6) in the main text.

A.2 Proof of Proposition 1

We start by taking first order condition of the maximization problem inside (3.9). It reads as

WR
i (t) (1 − si) =

1
θ

αi(t)
1
θ Ri(n, t)

1
θ −1n1− 1

θ [Vi(n + 1, t)− Vi(n, t)]

Using notation of inventor employment per product line, ri(n, t), first order condition can be rewritten
as

WR
i (t) (1 − si) = αi(t)

1
θ

1
θ

ri(n, t)
1
θ −1 [Vi(n + 1, t)− Vi(n, t)] (A.2)

I conjecture that the solution to HJB equation (3.9) is Vi(n, t) = nvi(t)Y(t) for a function vi(t). Replacing
this conjecture into (A.2) implies that per product line inventor employment is independent of the
number of product lines the firm owns, n, such that ri(n, t) = ri(t), and equation (3.11) can be derived.
Per product line innovation rate can be derived from R&D production function (3.8) substituting
Ri(n, t) = ri(t)n. This gives us equation (3.10) in Proposition 1 which states that per product line
innovation rate is independent of the firm size proxied by n.

Finally replacing conjecture and first order condition (A.2) into the HJB equation (3.9), and denoting
the growth rate of aggregate output as g(t) ≡ Ẏ(t)

Y(t) , equation (3.12) is derived. This equation governs
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the time evolution of vi(t) and states that it is independent of n, as conjectured.

A.3 Proof of Proposition 2

First order condition to the maximization problem (3.14), after substituting Vi(1, t) = vi(t)Y(t), can be
found as below

WR
i (t)(1 − si) =

1
f

1
θ

αi(t)
1
θ r̃i(t)

1
θ −1vi(t)Y(t) (A.3)

Substituting (A.3) into equation (3.14) results in (3.15) as stated by the proposition. Finally we combine
incumbent and entrant first order conditions, equations (A.2) and (A.3), respectively. That is, the left
hand side of both equations are equal, thus right hands sides have to be equal as well. Organizing
terms yields the relationship between entrant and incumbent per product line inventor employments,
i.e. equation (3.16). Finally, we can derive equation (3.17) by using R&D production technologies (3.10)
and (3.17).

A.4 Evolution of firm size distribution

The mass of product lines owned by firms located in i is denoted by ψi(t). To derive the system of
equations that govern the time evolution of ψi(t), we start with Pi(n, t) which denotes the measure of
firms that are located in i and own n products. ψi(t) and Pi(n, t) are related as follows

ψi(t) ≡
∞

∑
n=1

nPi(n, t) (A.4)

Unlike Klette and Kortum (2004), the firm size distribution has a spatial angle in the sense that we
need to keep track of firm location which is the location where the firm locates its immobile R&D lab
at the time of entry.

For n = 2, 3, . . ., we have

Ṗi(n, t) = −n
[
x(t) + zi(t)

]
Pi(n, t) + (n − 1)zi(t)Pi(n − 1, t) + (n + 1)x(t)Pi(n + 1, t) (A.5)

Rate of change in Pi(n, t) equals three terms. First term represents outflows due to either creative
destruction or incumbent firms’ own innovation. The second term represents inflows due to innovations
of firms with n − 1 products. The third term also represents inflows to state n due to the fact that
firms with n + 1 products lose one product line as a result of creative destruction.

For state n = 1, we have the following equation

Ṗi(1, t) = −
[
x(t) + zi(t)

]
Pi(1, t) + z̃i(t)ψ̃i(t) + 2x(t)Pi(2, t) (A.6)

Similarly, first term represents outflows from the state. Second term stands for rate of entry that
takes place in same location. Finally, third term represents inflows from state n = 2 due to creative
destruction.
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While the total mass of product lines is normalized to one, the total mass of firms is endogenous
and evolves over time. Denoting by Mi(t) the mass of firms located in i at time t, we can derive the
following equation

Ṁi(t) = −x(t)Pi(1, t) + z̃i(t)ψ̃i(t) (A.7)

Rate of change in Mi(t) equals to inflow due to entry in i, the second term, minus outflow due to
creative destruction. Note that firms losing their last product line exits the economy.

A.5 Equilibrium production worker wage rate

Demand equation for intermediate good ν from final good producers in a location i is as follows

p(ν, t)ki(ν, t) = (1 − β)Yi(t)

Replacing optimal pricing rule p(ν, t) = λa(ν, t)−1 yields ki(ν, t) = λ−1a(ν, t)(1 − β)Yi(t). Replacing

this into final good production function and using the constant Ā =
(

λ
1−β

)1−β
, we can solve for the

output in i as

Yi(t) = A(t)
1−β

β Li(t)

where A(t) = exp
(∫ 1

0 log a(ν, t)dν
)

is aggregate productivity index of the economy. Then total output
equals

Y(t) ≡ ∑
i

Yi(t) = A(t)
1−β

β L̄

Demand for labor is given by WL
i (t)Lj(t) = βYi(t). Replacing output and solving for wage results in

WL
i (t) = βA(t)

1−β
β

Substituting A(t)
1−β

β with Y(t)
L̄ yields equation (3.21) in the main text.

A.6 Growth rate of A(t)

From definition of A(t), we have

logA(t) =
∫ 1

0
log a (ν, t) dν

Then
Ȧ(t)
A(t)

=
d logA(t)

dt
= lim

dt→0

logA(t + dt)− logA(t)
dt

Using definition, we can show

logA(t + dt)− logA(t) =
∫ 1

0
[log a (ν, t + dt)− log a (ν, t)] dν
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Productivity of a product line ν increases by a proportionality factor of λ > 1 as a result of creative
destruction. The equilibrium rate of creative destruction is x(t). Therefore, for a small time interval of
dt, we can write

a (ν, t + dt) =

λa(ν, t) with probability x(t)dt

a(ν, t) with probability 1 − x(t)dt

Thus, log a (ν, t + dt)− log a (ν, t) is also a random variable with the following

log a (ν, t + dt)− log a (ν, t) =

log λ with probability x(t)dt

0 with probability 1 − x(t)dt

Integrating over all product lines ν ∈ [0, 1], we have

Ȧ(t)
A(t)

= lim
dt→0

log (λ) x(t)dt
dt

= log (λ) x(t)

as given in the main text.

A.7 Allocation of profits across agents

Let D(t) denote the total profits paid to agents. It equals to sum of profits of intermediate good firms
after subtracting R&D costs (including entrants). Then

D(t) =
(

1 − λ−1
)
(1 − β)Y(t)− ∑

i
WR

i (t)(1 − si)Ri(t)

From the distribution of profits, we also have

D(t) = ∑
i

d(t)WL
i (t)Li(t) + ∑

i
d(t)WR

i (t)Ri(t)

Then solving for d(t) yields

d(t) =
(
1 − λ−1) (1 − β)Y(t)− ∑i WR

i (t)(1 − si)Ri(t)

∑i WL
i (t)Li(t) + ∑i WR

i (t)Ri(t)
(A.8)

A.8 Proof of Proposition 3

I prove this proposition under the conjecture that zi(t) = z, z̃i = z̃ for all i, and x(t) = x as assumed in
the main text. If ri is constant over time in BGP equilibrium as conjectured, then r̃i is also constant
satisfying r̃i =

ri
F (see Proposition 2). Total inventor employment in a location i equals the sum of

inventors in incumbent and entrant firms in that location. Under the conjecture that ψi and ψ̃i are
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constant over time in BGP, then Ri = ψiri + ψ̃i r̃i is also constant, and

x = ∑
i

ψizi + ∑
i

ψ̃i z̃i

= z ∑
i

ψi + z̃ ∑
i

ψ̃i

= z + z̃ (A.9)

As ∑i ψi = ∑i ψ̃i = 1. System of equations (A.5), (A.6) and (A.7) admit a stationary solution Pi(n, t) =
Pi(n) such that17

Pi(n) =
ψ̃i z̃zn−1

nxn , n = 1, 2, . . . (A.10)

Then

ψi =
∞

∑
n=1

Pi(n)n =
∞

∑
n=1

ψ̃i z̃izn−1
i

nxn n = ψ̃i
z̃
z

∞

∑
n=1

( z
x

)n

= ψ̃i
z̃
z

(
1

1 − z
x
− 1
)

= ψ̃i (A.11)

Second line follows from (A.9) given that z > 0 and z̃ > 0 in BGP equilibrium.
Inventor market clearing implies

Ri = ψiri + ψ̃i r̃i

=
(

1 + F−1
)

ψiri

=
1 + F

F
ψi

zθ

αi

which implies

ψi =
F

1 + F
z−θαiRi (A.12)

We can solve for z using ∑i ψi = 1. That is,

∑
i

ψi = 1 =
F

1 + F
z−θ ∑

i
αiRi

which gives

z =

[
F

1 + F ∑
i

αiRi

] 1
θ

(A.13)

17See Klette and Kortum (2004) for details.
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Using (A.13) and (A.12), we can show that

ψi = ψ̃i =
αiRi

∑i αiRi
(A.14)

as stated in Proposition 3, satisfying the initial conjecture that ψi and ψ̃i are time invariant.

A.9 Proof of Proposition 4

From (3.26) and zi = z for all i, it follows that

vi = v ≡ π

ρ − g + x − θ−1
θ z

First order condition of incumbent firm maximization problem (A.2) and the fact that Vi(n, t) = nvY(t)
in BGP imply that

WR
i (t)(1 − si) = α

1
θ
i

1
θ

r
1
θ −1
i vY(t)

in BGP. Defining normalized inventor wage wR
i (t) =

WR
i (t)

Y(t) , and as z = zi = (αiri)
1
θ for all i, we can

rewrite above equation as

wR
i (t)(1 − si) = z1−θ 1

θ
αiv

for all t. It immediately follows that normalized inventor wage is constant in BGP and equals to

wR
i =

1
θ

z1−θv
αi

1 − si

as stated in Proposition 4.

A.10 Proof of Proposition 5

In BGP, all consumption rates grow with g = 1−β
β log(λ)x. Thus, relative consumptions across

locations are time invariant. Let CT
ij ≡

CT
i (t)

CT
j (t)

for type T = W, R. Define normalized value functions

uT
i (ε, t) ≡ UT

i (ε,t)
CT

i (t)
and ūT

i (t) ≡
ŪT(t)
CT

i (t)
. First we can show that

ūT
i (t) =

∫
max

j

(
uT

j (ej, t)CT
ji

)
fϵ(e)de (A.15)

Organizing (3.6), we can show that normalized value function uT
i (ε, t) satisfies the following functional

equation [
ρ + ζ − g

]
uT

i (ε, t) = Aiε + ζūT
i (t) + ∂tuT

i (ε, t) (A.16)
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Following time invariant solutions to normalized agent value functions satisfy the system of equations
given by (A.15) and (A.16)

uT
i (ε) =

Aiε + ζūT
i

ρ + ζ − g
and ūT

i =
∫

max
j

(
uT

j (ej)CT
ji

)
fϵ(e)de

We can recover agent value functions simply using definitions

UT
i (ε, t) =

AiεCT
i (t) + ζŪT(t)
ρ + ζ − g

(A.17)

Replacing value function (A.17) into the migration problem (3.4) yields

max
j

UT
j (ej, t) =

maxj

(
AjejCT

j (t)
)
+ ζŪT(t)

ρ + ζ − g
(A.18)

Substituting (A.18) into the definition of ŪT(t), equation (3.5), results in

ŪT(t) =
1

ρ + ζ − g

(
Eϵ

[
max

j

(
AjejCT

j (t)
)]

+ ζŪT(t)
)

(A.19)

In order to take expectation in (A.19), we need to derive the distribution of the maximum term. The
assumption that locations tastes are independently distributed Frechet, i.e. ε i ∼ Frechet(ξ, 1), implies

max
j

(
AjejCT

j (t)
)
∼ Frechet

ξ,

[
N

∑
j=1

(
AjCT

j (t)
)ξ
] 1

ξ

 (A.20)

Taking expectation in (A.19) and solving for ŪT(t) yields

ŪT(t) =
1

ρ − g
Γ
(

1 − 1
ξ

)[ N

∑
j=1

(
AjCT

j (t)
)ξ
] 1

ξ

(A.21)

Finally substituting ŪT(t) into the agent value function in (A.17) results in

UT
i (ε, t) =

AiεCT
i (t)

ρ + ζ − g
+

ζ

(ρ + ζ − g) (ρ − g)
Γ
(

1 − 1
ξ

)[ N

∑
j=1

(
AjCT

j (t)
)ξ
] 1

ξ

as stated in Proposition 5.
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A.11 Proof of Proposition 6

Provided the analytical solution for the agent value function from Proposition 5, the migration choice
given by (3.4) simplifies such that

iT(t)⋆ = arg max
j

UT
j (ej, t) = arg max

j

(
AjejCT

j (t)
)

(A.22)

as the second term on the right hand side of equation (3.29) is independent of locations. Moreover,
consumption is proportional to wage rate, i.e.

CT
j (t) = [1 + d − τ]wT

i Y(t) (A.23)

where d is the proportionality factor of profits allocated to agents to wages, given by (A.8), and τ is
the labor income tax rate, given by (3.25).18 As d and τ are independent of locations, replacing (A.23)
into the migration problem (A.22) delivers equation (3.30).

In BGP, an agent from i, who has just drawn taste shocks {em}N
m=1, migrates to j if and only if

AjejwT
j ≥ AmemCT

m, ∀m = 1, . . . , N

Let γT
ji denote the share of agents of type T in i moving to j among who draw taste shocks. Then,

γT
ji = P

{
AjejwT

j ≥ AmemwT
m, ∀m ̸= j

}
=

(
AjwT

j

)ξ

∑N
m=1 (AmwT

m)
ξ

, ∀i = 1, . . . , N

The second line follows from the property that taste shocks are distributed Frechet. Notice that γT
ji

does not vary with i. Hence we can assert that γT
ji = γT

j for all i.
Let MT

j denote the mass of type-T agents located in j.19 Then law of motion of this variable depends

18In BGP, d(t) is time invariant. In equation (A.8), Y(t) cancels from both numerator and denominator of the expression.
As a result, in BGP, we have

d =

(
1 − λ−1) (1 − β)− ∑i wR

i (1 − si)Ri

∑i wL
i Li + ∑i wR

i Ri

after a conjecture that worker and researcher populations are stable in BGP. This conjecture holds in BGP as a result of the
migration decision given by (A.22) as proven below. Moreover, given same conjecture, we can show that τ(t) is independent
of time in BGP. That is, following from equation (3.25),

τ =
∑N

i=1 siwR
i Ri

∑N
i=1 wL

i Li + wR
i Ri

19 ML
j = Lj and MR

j = Rj.
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on migration flows γT
j such that

ṀT
j =

N

∑
i=1

γT
j ζMT

i︸ ︷︷ ︸
Inflow

− ζMk
j︸︷︷︸

Outflow

= ζ
(

γT
j MT − MT

j

)
where MT is the total population of type-T, i.e. MT = ∑j MT

j . As ṀT
j = 0 in BGP, we have MT

j = γT
j MT.

That is,

Lj = γL
j L̄

Rj = γR
j R̄

Therefore, the initial conjecture that population shares are time invariant holds true.
Finally, we can replace the equilibrium wage rates into the expression for γT

j . Firstly, wL
j = β

L̄ for all
j. Hence,

γL
j =

Aξ
j

∑N
m=1 Aξ

m

as given by (3.31). Using equation (4), we can also prove that

γR
j =

Aξ
j

(
αj

1−sj

)ξ

∑N
m=1 Aξ

m

(
αm

1−sm

)ξ

Combining the expressions for γL
j and γR

j proves equation (3.32) given by Proposition 6.

A.12 Proof of Proposition 7

The expression for z in BGP given by (3.34) is derived in Section A.8 (equation (A.13)).
Total rate of innovation generated in a location i, xi, equals to the sum of two terms, first of which

is the product of mass of product lines owned by incumbent firms located in i and rate of innovation
per product line z. The second term is the product of the mass of entrants located in i and the rate of
innovation per entrant, i.e. z̃. Thus,

xi = ψiz + ψ̃i z̃

In Section A.8 equation (A.12), it is shown that ψi = ψ̃i =
F

1+F z−θαiRi. Moreover, we know z̃ = z/F.
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Thus

xi =
(

1 + F−1
)

ψiz

=
1 + F

F
F

1 + F
z−θαiRiz

= z1−θαiRi

as stated in Proposition 7 equation (3.35).
As shown by equation (A.9), x = z + z̃ = 1+F

F z. Finally, equation (3.37) follows from equations
(3.23) and (3.36).
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